, Volume 78, Issue 6, pp 723–731 | Cite as

Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.—Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov.

  • D. G. Zavarzina
  • T. P. Tourova
  • T. V. Kolganova
  • E. S. Boulygina
  • T. N. Zhilina
Experimental Articles


An anaerobic, spore-forming bacterium (strain Z-0521) was isolated from the iron-reducing microbial community enriched from sample of bottom sediments from low-mineralized soda lake Khadyn, Tuva upper Yenisey region (Russia). Cells of strain Z-0521 are motile straight Gram-positive rods, 0.7–1.1 (µm in diameter and 3.0–7.0 µm length. It is a mesophilic halotolerante obligate alkaliphilic bacterium with a pH range for growth 8.5–10.7 (optimum at 9.6–9.7). Utilizes carbohydrates. Peptides, organic acids or alcohols are not utilized. In the presence of mannite strain Z-0521 reduces AQDS, arsenate, selenate and selenite. It is capable of N2 fixation and has nitrogenase gene nifH. The dominant cellular fatty acids are C16:0, C16:1w7c and Ca15. The G+C content in the DNA is 36.2 mol %. 16S rRNA gene sequencing identified strain Z-0521 as a member of rRNA group 6 of the genus Bacillus. Its closest relatives are B. alkalidiazotrophicus and B. macyae (98.3 and 98.1% sequence similarity). On the basis of physiological properties and genetic analysis, it is proposed that strain Z-0521T should be assigned to a new species of a new genus, Anaerobacillus alkalilacustre gen. nov., sp. nov. It is also proposed that Bacillus arseniciselenatis, Bacillus macyae and Bacillus alkalidiazotrophicus should be transferred to this new genus, with Anaerobacillus arseniciselenatis (formely Bacillus arseniciselenatis) as the type species.

Key word

strictly anaerobic diazotrophic Bacillus group 6 Anaerobacillus alkalilacustre soda lake 16S rDNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oremland, R.S. and Stolz, J.F., The Ecology of Arsenic, Science, 2003, vol. 300, pp. 939–944.CrossRefPubMedGoogle Scholar
  2. 2.
    Blum, J.S., Bindi, A.B., Buzzelli, J., Stolz, J.F., and Oremland, R.S., Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two Haloalkaliphiles from Mono Lake, California that Respire Oxyanions of Selenium and Arsenic, Arch. Microbiol., 1998, vol. 171, pp. 19–30.CrossRefGoogle Scholar
  3. 3.
    Santini, J.M. Streimann, I.C.A., and van den Hoven, R.N., Bacillus macyae sp. nov., an Arsenate-Respiring Bacterium Isolated from an Australian Gold Mine, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 2241–2244.CrossRefPubMedGoogle Scholar
  4. 4.
    Ye, Q., Roh, Y., Carroll, S.L., Blair, B., Zhou, J., Zhang, C.L., and Fields, M.W., Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium, Arch. Microbiol., 2004, vol. 70, pp. 5595–5602.Google Scholar
  5. 5.
    Zavarzina, D.G., Kolganova, T.V., Boulygina, E.S., Kostrikina, N.A., Tourova, T.P., and Zavarzin, G.A., Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the First Alkaliphilic Representative of the Family Geobacteraceae Isolated from a Soda Lake, Mikrobiologiya, 2006, vol. 75, no. 6, pp. 775–785 [Microbiology (Engl. Transl.), vol. 75, no. 6, pp. 673–682].Google Scholar
  6. 6.
    Zhilina, T.N., Zavarzina, D.G., Osipov, G.A., Kostrikina, N.A., and Tourova, T.P., Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov.—A New Anaerobic Alkaliphilic Peptolytic and Iron-Reducing Bacteria from a Soda Lakes., Microbiologiya, 2009, vol. 78, no. 3, pp. 500–518 [Microbiology (Engl. Transl.), vol. 78, no. 3, pp. 455–467].Google Scholar
  7. 7.
    Kevbrin, V.V. and Zavarzin, G.A., The Effect of Sulfur Compounds on Growth of the Halophilic Homoacetic Bacterium Acetohalobium arabaticum. Microbiologiya, 1992, vol. 61, no. 5, pp. 812–817 [Microbiology (Engl. Transl.), vol. 61, no. 5, pp. 563–567].Google Scholar
  8. 8.
    Pfennig, N. and Wagner, S., An Improved Method of Preparing Wet Mounts for Photomicrographs of Microorganisms, J. Microbiol. Methods, 1986, vol. 4, pp. 303–306.CrossRefGoogle Scholar
  9. 9.
    Zavarzina, D.G., Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermanaerovibrio velox sp. nov., a New Anaerobic, Thermophilic, Organotrophic Bacterium that Reduces Elemental Sulfur, and Emended Description of the Genus Thermanaerovibrio, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1287–1295.PubMedGoogle Scholar
  10. 10.
    Lovley, D.R. and Phillips, E.J.P., Organic Matter Mineralization with the Reduction of Ferric Iron in Anaerobic Sediments, Appl. Environ. Microbiol., 1986, vol. 51, pp. 683–689.PubMedGoogle Scholar
  11. 11.
    Trüper, H.G. and Schlegel, H.G., Sulfur Metabolism in Thiorhodaceae. 1. Quantitative Measurements on Growing Cells of Chromatium okenii, Ant. van. Leeuwenhoek J. Microbiol. Serol., 1964, vol. 30, pp. 225–236.CrossRefGoogle Scholar
  12. 12.
    Stead, D.E., Sellwood, J.E., Wilson, J., and Viney, I., Evaluation of a Commercial Microbial Identification System Based on Fatty Acid Profiles for Rapid, Accurate Identification of Plant Pathogenic Bacteria, J. Appl. Bacteriol., 1992, vol. 72, pp. 315–321.Google Scholar
  13. 13.
    Summer, J.B. and Dounce, A.L., Liver Catalase, in Methods in Enzymology, 1955, vol. 2, p. 780.Google Scholar
  14. 14.
    Marmur, J., A Procedure for the Isolation of Dioxyribonucleic Acid from Microorganosms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.CrossRefGoogle Scholar
  15. 15.
    Marmur, J. and Doty, P., Determination of the Base Composition of Deoxyribonucleotic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 5, pp. 109–118.CrossRefGoogle Scholar
  16. 16.
    Lane, D.J., 16S/23S rRNA Sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E., Goodfellow, and Chichester, M., Eds., UK: John Wiley & Sons, 1991, pp. 115–177.Google Scholar
  17. 17.
    Marusina, A.I., Boulygina, E.S., Kuznetsov, B.B., Tourova, T.P., Kravchenko, I.K., and Gal’chenko, V.F., A System of Oligonucleotide Primers for the Amplification of nifH Genes of Different Taxonomic Groups of Prokaryotes, Microbiologiya, 2001, vol. 70, no. 1, pp. 86–91 [Microbiology (Engl. Transl.), vol. 70, no. 1, pp. 73–78].Google Scholar
  18. 18.
    Van de Peer, Y. and De Wachter, R., TREECON for Windows: a Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Widows Environment, Comput. Applic. Biosci., 1994, vol. 10, pp. 569–570.Google Scholar
  19. 19.
    Nielsen, P., Rainey, F.A., Outtrup, H., Priest, F.G., and Dagmar, F., Comparative 16S rRNA Sequence Analysis of some Alkaliphilic Bacilli and the Establishment of a Sixth rRNA Group within the Genus Bacillus, FEMS Microbiol. Lett., 1994, vol. 117, pp. 61–66.CrossRefGoogle Scholar
  20. 20.
    Yumoto, I., Bioenergetics of Alkaliphilic Bacillus spp., J. Biosci. Bioengineer, 2002, vol. 93, pp 342–353.Google Scholar
  21. 21.
    Sorokin, I.D., Kravchenko, I.K., Tourova, T.P., Kolganova, T.V., Boulygina, E.S., and Sorokin, D.Yu., Bacillus alkalidiazotrophicus sp. nov., a Diazotrophic, Low Salt-Tolerant Alkaliphile Isolated from Mongolian Soda Soil, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 2459–2464.CrossRefPubMedGoogle Scholar
  22. 22.
    Stackebrandt, E., Frederiksen, W., Garrity, G.M., and 10 other authors, Report of the Ad Hoc Committee for Re-Evaluation of the Species Definition in Bacteriology, Int. J. Syst. Evol. Bacteriol., 2002, vol. 52, pp. 1043–1047.Google Scholar
  23. 23.
    Ash, C., Farrow, J.A.E., Wallbanks, S., and Collins, M.D., Phylogenetic Heterogeneity of the Genus Bacillus Revealed by Comparative Analysis of Small-Subunit-Ribosomal RNA Sequences, Lett. Appl. Microbiol., 1991, vol. 13, pp. 202–206.Google Scholar
  24. 24.
    Rainey, F.A., Fritze, D., and Stackebrandt, E., The Phylogenetic Diversity of Thermophilic Members of the Genus Bacillus as Revealed by 16S rRNA Analysis, FEMS Microbiol. Lett., 1994, vol. 115, pp. 205–211.CrossRefPubMedGoogle Scholar
  25. 25.
    Kämpfer, P., Whole-Cell Fatty Acid Analysis in the Systematics of Bacillus and Related Genera, in Applications and Systematics of Bacillus and Relatives, Berkley, R., Heyndrickx, M., Logan, N., and De Vos, P., Eds., Oxford: Blackwell Science, 2002, pp. 271–299.CrossRefGoogle Scholar
  26. 26.
    Achouak, W., Normand, P., and Heulin, T., Comparative Phylogeny of rrs and nifH Genes in the Bacillaceae, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 961–967.PubMedGoogle Scholar
  27. 27.
    Boone, D.R., Liu, Y., Zhao, Z.J., Balkwill, D.L., Drake, G.R., Stevens, T.O., and Aldrich, H.C., Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-Reducing Anaerobe from the Deep Terrestrial Subsurface, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 441–448.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • D. G. Zavarzina
    • 1
  • T. P. Tourova
    • 1
  • T. V. Kolganova
    • 2
  • E. S. Boulygina
    • 2
  • T. N. Zhilina
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Bioengineering CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations