, Volume 78, Issue 1, pp 92–101 | Cite as

Roseococcus suduntuyensis sp. nov., a new aerobic bacteriochlorophyll a-containing bacterium isolated from a low-mineralized soda lake of Eastern Siberia

  • E. N. BoldarevaEmail author
  • T. P. Tourova
  • T. V. Kolganova
  • A. A. Moskalenko
  • Z. K. Makhneva
  • V. M. Gorlenko
Experimental Articles


A novel strain, SHET, of aerobic bacteriochlorophyll a-containing bacteria was isolated from the surface layer of bottom sediments from the soda lake Shuluutai-Ekhe-Torom (Chita oblast, Eastern Siberia, Russia). The lake water has a total mineralization of 30 g/l and a pH of 9.2. The cells of strain SHET are cocci or short rods, which reproduce by uniform division. The cells are motile by means of flagella. The cell wall structure is of the gram-negative type. Sparse intracytoplasmic membrane vesicles are located close to the cell wall. The new isolate is an obligate aerobe and facultative alkaliphile which grows in a pH range of 7.5–9.5 (with an optimum at pH 8.5–9.0). The best growth of strain SHET occurred at 2.0 g/l NaCl and 23–28°C. Photosynthetic pigments are represented by bacteriochlorophyll a, with the maximum absorption at 865 nm in the in vivo spectrum, and carotenoids (spirilloxanthin derivatives). Analysis of the 16S rRNA gene sequences demonstrated that strain SHET is closely related to Roseococcus thiosulfatophilus of the α-1 subclass of Proteobacteria (98.6 % similarity). The DNA G+C base content is 69.1 mol %. Unlike Rsc. thiosulfatophilus, strain SHET grows well on sugars and glycerol and is not capable of utilizing thiosulfate as an energy source. The new isolate is a facultative alkaliphile and reduces nitrates to nitrites. On the basis of its phenotypic and genetic characteristics, strain SHET was described as a new species of the genus Roseococcus, Rsc. suduntuyensis sp. nov.

Key words

Proteobacteria anoxygenic phototrophs aerobic bacteriochlorophyll a-containing bacteria alkaliphily soda lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yurkov, V.V. and Gorlenko, V.M., Roseococcus gen. nov., a New Genus of Freshwater Aerobic, Bacteriochlorophyll a-Containing Bacteria, Mikrobiologiya, 1991, vol. 60, no. 5, pp. 902–907.Google Scholar
  2. 2.
    Yurkov, V.V. and Csotonyi, J.T., New Light on Aerobic Anoxygenic Phototrophs, Adv. Photosynthesis and Respiration, Govindjee, Ed., Berlin: Springer (in press).Google Scholar
  3. 3.
    Yurkov, V., Stackebrand, E., Holmes, A., Fuerst, J., and Hugenholtz, P., Golecki, J., God’on, N., Gorlenko, V., and Kompantseva, E. Phylogenetic Position of Novel Aerobic, Bacteriochlorophill a-Containing Bacteria and Description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litorales gen. nov., sp. nov, Int. J. Syst. Bacteriol., 1994, vol. 44, no. 3, pp. 427–443.PubMedGoogle Scholar
  4. 4.
    Takaichi, S, Carotenoids and Carotenogenesis in Anoxygenic Phototrophic Bacteria, in The Photochemistry of Carotenoids, Frank, H.A., Young, A.J., Britton, G., and Cogdell, R.J., Eds., Dordrecht: Kluwer Acadmic Publishers, 1999, vol. 8, pp. 39–69.Google Scholar
  5. 5.
    Alarico, S., Rainey, F.A., Empadinhas, N., Schumann, P., Nobre, M.F., and Da Costa, M.S., Rubritepida flocculans gen. nov., sp. nov., a New Slightly Thermophilic Member of the α1 Subclass of the Proteobacteria, Syst. Appl. Microbiol., 2002, vol. 25, pp. 198–206.PubMedCrossRefGoogle Scholar
  6. 6.
    Sorokin, D.Yu., Tourova, T.P., Kuznetsov, B.B., Bryantseva, I.A., and Gorlenko, V.M., Roseinatronobacter thiooxidans gen. nov., sp. nov., a New Alkaliphilic Aerobic Bacteriochlorophyll a-Containing Bacterium Isolated from a Soda Lake, Mikrobiologiya, 2000, vol. 69, no. 1, pp. 89–97 [Microbiology (Engl. Transl.), vol. 69, no. 1, pp. 75–82].Google Scholar
  7. 7.
    Boldareva, E.N., Bryantseva, I.A., Tsapin, A., Nel’son, K., Sorokin, D.Yu., Tourova, T.P., Boichenko, V.A., Stadnichuk, I.N., and Gorlenko, V.M., The New Alkaliphilic Bacteriochlorophyll a-Containing Bacterium Roseinatronobacter monicus sp. nov. from the Hypersaline Soda Mono Lake (California, United States), Mikrobiologiya, 2007, vol. 76, no. 1, pp. 95–106 [Microbiology (Engl. Transl.), vol. 76, no. 1, pp. 82–92].Google Scholar
  8. 8.
    Pfennig, N., Rhodocyclus purpureus gen. nov. and sp. nov., a Ring-Shaped Vitamin B12 Requiring Member of the Family Rhodospirillaceae, Int. J. Syst. Bacteriol., 1978, vol. 28, pp. 283–288.CrossRefGoogle Scholar
  9. 9.
    Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, Oxford: Clarendon, 1986 [Russ. Transl. Moscow: Mir, 1991].Google Scholar
  10. 10.
    Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod. (Methods of Analysis of Natural Waters), Moscow: Nedra, 1970.Google Scholar
  11. 11.
    Carret, R.H. and Nason, A., Further Purification and Properties of Neurospora Nitrate Reductase, J. Biol. Chem., 1969, vol. 244, pp. 2870–2882.Google Scholar
  12. 12.
    Reynolds, E.S., The Use of Lead Citrate at High pH as an Electron Opaque Stain in Electron Microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–218.PubMedCrossRefGoogle Scholar
  13. 13.
    Moskalenko, A.A., Britton, G., Konnor, A., Iang, A., and Toropygina, O.A., Carotenoid Composition in Chromatophores and Pigment-Protein Complexes Isolated from Chromatium minutissimum Cells Grown in the Presence of Diphenylamine, Biol. Membr., 1991, vol. 8, pp. 249–260.Google Scholar
  14. 14.
    Makhneva, Z.K. and Moskalenko, A.A., Pigment-Protein Complexes from the New Sulfur Photosynthetic Bacterium Ectothiorhodosinus mongolicum Strain M9 with Normal and Inhibited Carotenoid Synthesis, Biol. Membr., 2004, vol. 21, pp. 196–207.Google Scholar
  15. 15.
    Tsaplina, I.A., Osipov, G.A., Bogdanova, T.I., Nedorezova, T.P., and Karavaiko, G.I., Fatty Acid Composition of the Lipids of Thermoacidophilic Bacteria of the Genus Sulfobacillus, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 821–830.Google Scholar
  16. 16.
    Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 203–218.Google Scholar
  17. 17.
    Owen, R.J., Hill, L.R., and Lapage, S.P., Determination of DNA Base Composition from Melting Profiles in Dilute Buffers, Biopolymers, 1969, vol. 7, pp. 503–516.PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards, U., Rogall, T., Bloeker, H., Ende, M.D., and Boeettge, E.C., Isolation and Direct Complete Nucleotide Determination of Entire Genes, Characterization of Gene Coding for 16S Ribosomal RNA, Nucleic Acids Res., 1989, vol. 17, pp. 7843–7853.PubMedCrossRefGoogle Scholar
  19. 19.
    De Ley, J., Cattoir, H., and Reynaerts, A., The Quantitative Measurements of DNA Hybridizaition from Renaturation Rates, Eur. J. Biochem., 1970, vol. 12, pp. 133–140.PubMedCrossRefGoogle Scholar
  20. 20.
    Stackebrandt, E. and Ebers, J., Taxonomic Parameters Revisited: Tarnished Gold Standards, Microbiology today, 2006, vol. 6, pp. 152–155.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. N. Boldareva
    • 1
    Email author
  • T. P. Tourova
    • 1
  • T. V. Kolganova
    • 2
  • A. A. Moskalenko
    • 3
  • Z. K. Makhneva
    • 3
  • V. M. Gorlenko
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Bioengineering CenterRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Fundamental Problems of BiologyRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations