Microbiology

, Volume 78, Issue 1, pp 33–41 | Cite as

Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense

  • A. L. Mulyukin
  • N. E. Suzina
  • A. Yu. Pogorelova
  • L. P. Antonyuk
  • V. I. Duda
  • G. I. El-Registan
Experimental Articles

Abstract

Differences in generation of dormant forms (DF) were revealed between two strains of non-sporeforming gram-negative bacteria Azospirillum brasilense, Sp7 (non-endophytic) and Sp245 (endophytic strain). In post-stationary ageing bacterial cultures grown in a synthetic medium with a fivefold decreased initial nitrogen content, strain Sp7 formed two types of cyst-like resting cells (CRC). Strain Sp245 did not form such types of DF under the same conditions. CRC of the first type were formed in strain Sp245 only under phosphorus deficiency (C > P). The endophytic strain was also shown to form structurally differentiated cells under complete starvation, i.e. at a transfer of early stationary cultures, grown in the media with C > N unbalance, to saline solution (pH 7.2). These DF had a complex structure similar to that of azotobacter cysts. The CRC, which are generated by both azospirilla strains and belong to distinct morphological types, possessed the following major features: absence of division; specific ultrastructural organization; long-term maintenance of viability (for 4 months and more); higher heat resistance (50–60°C, 10 min) as compared with vegetative cells, i.e. the important criteria for dormant prokaryotic forms. However, CRC of non-endophytic strain Sp7 had higher heat resistance (50, 55, 60°C). The viability maintenance and the portion of heat-resistant cells depended on the conditions of maturation and storage of CRC populations. Long-term storage (for 4 months and more) of azospirilla DF populations at −20°C was optimal for maintenance of their colony-forming ability (57% of the CFU number in stationary cultures), whereas the largest percentage of heat-resistant cells was in CRC suspensions incubated in a spent culture medium (but not in saline solution) at room temperature. The data on the intraspecies diversity of azospirilla DF demonstrate the relation between certain type DF formation to the type of interaction (non-endophytic or endophytic) with the plant partner and provide more insight into the adaptation mechanisms that ensure the survival of gram-negative non-spore-forming bacteria in nature.

Key words

Azospirillum brasilense Sp7 and Sp 245 cysts cyst-like cells dormancy morphotypes ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldani, J.I, Krieg, N.R, Baldani, V.L.D, Hartman, A, and Dobereiner, J, Genus II Azospirillum, in Bergey’s Manual of Systematic Bacteriology. Second Edition. vol. 2. The Proteobacteria. Part C. The Alpha-, Beta-, and Epsilonproteobacteria, Brenner, D.J., Kreig, N.R., and Stanley, J.T., Eds., New York: Bergey’s Manual Trust, 2005, pp. 7–26.Google Scholar
  2. 2.
    Steenhoudt, O. and Vanderleyden, J., Azospirillum, a Free-Living Nitrogen-Fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical and Ecological Aspects, FEMS Microbiol. Rev., 2000, vol. 24, no. 4, pp. 487–506.PubMedCrossRefGoogle Scholar
  3. 3.
    Bashan, Y., Holguin, G., and Bashan, L.E., Azospirillum-Plant: Physiological, Molecular, Agricultural, and Environmental Advances (1997–2003), Can. J. Microbiol., 2004, vol. 50, pp. 521–577.PubMedCrossRefGoogle Scholar
  4. 4.
    Molekulyarnye osnovy vzaimootnoshenii assotsiativnykh mikroorganizmov s rasteniyami (Molecular Basics of the Interactions between Plants and Associated Microorganisms), Ignatov, V.V, Ed., Moscow: Nauka, 2005.Google Scholar
  5. 5.
    Baldani, J.I. and Baldani, V.L.D., History on the Biological Nitrogen Fixation Research in Graminaceous Plants: Special Emphasis on the Brazilian Experience, Anals da Academia Brasileira de Ciencias, 2005, vol. 77, no. 3, pp. 549–579.Google Scholar
  6. 6.
    Martin-Didonet, C.C.G., Chubatsu, L.S., Souza, E.M., Kleina, M., Rego, F.G.M., Rigo, L.U., Yates, M.G., and Pedrosa, F.O., Genome Structure of the Genus Azospirillum, J. Bacteriol., 2000, vol. 182, no. 14, pp. 4113–4116.PubMedCrossRefGoogle Scholar
  7. 7.
    Sadasivan, L. and Neyra, C.A., Flocculation in Azospirillum brasilense and A. lipoferum: Exopolysaccharides and Cyst Formation, J. Bacteriol., 1985, vol. 163, no. 2, pp. 716–723.PubMedGoogle Scholar
  8. 8.
    Sadasivan, L. and Neyra, C.A., Cyst Production and Brown Pigment Formation in Aging Cultures of Azospirillum brasilense ATCC 29145, J. Bacteriol., 1987, vol. 169, no. 4, pp. 1670–1677.PubMedGoogle Scholar
  9. 9.
    Volkogon, V.V., Mamchur, A.E., Lemeshko, S.V., and Minyailo, V.G., Azospirilla, endophytes of Gramineae Plants, Mikrobiol. Zh., 1995, vol. 57, no. 1, pp. 14–19.Google Scholar
  10. 10.
    Sadoff, H.L., Encystment and Germination in Azotobacter vinelandii, Bacteriol. Rev., 1975, vol. 39, no. 4, pp. 516–539.PubMedGoogle Scholar
  11. 11.
    Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., and Hartmann, A., In situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy, Appl. Environ. Microbiol., 1995, vol. 61, no. 3, pp. 1013–1019.PubMedGoogle Scholar
  12. 12.
    Schloter, M. and Hartmann, A., Endophytic and Surface Colonization of Wheat Roots (Triticum aestivum) by Different Azospirillum brasilense Strains Studied with Strain-Specific Monoclonal Antibodies, Symbiosis, 1998, vol. 25, pp. 159–179.Google Scholar
  13. 13.
    Bashan, Y., Puente, M.E., Rodriguez-Mendoza, M.N., Toledo, G., Holguin, G., Ferrera-Cerrato, R., and Pedrin, S., Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types, Appl. Environ. Microbiol., 1995, vol. 61, no. 5, pp. 1938–1945.PubMedGoogle Scholar
  14. 14.
    Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’-Registan, G.I., Formation of Resting Cells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 683–690].Google Scholar
  15. 15.
    Mulyukin, A.L., Suzina, N.E., Duda, V.I., and El’-Registan, G.I., Structural and Physiological Diversity among Cystlike Resting Cells of Bacteria of the Genus Pseudomonas, Mikrobiologiya, 2008, vol. 77, no. 4 [Microbiology (Engl. Transl.), vol. 77, no. 4, pp. 455–465].Google Scholar
  16. 16.
    Sudo, S.Z. and Dworkin, M., Comparative Biology of Procaryotic Resting Cells, Adv. Microb. Physiol., 1973, vol. 9, pp. 153–224.PubMedCrossRefGoogle Scholar
  17. 17.
    Döbereiner, J. and Day, J.M, Associative Symbiosis in Tropical Grasses: Characterization of Microorganisms and Dinitrogen Fixing Sites, in Proceedings of the First Int. Symp. on Nitrogen Fixation, Newton, E.W. and Newman, C.J., Eds., Pullman: Washington State Univ. Press, 1976, pp. 518–538.Google Scholar
  18. 18.
    Bashan, Y., Levanony, H., and Whitmoyer, E., Root Surface Colonization of Non-Cereal Crop Plants by Pleomorphic Azospirillum brasilense Cd, J. Gen. Microbiol., 1991, vol. 137, pp. 187–196.Google Scholar
  19. 19.
    Eskew, D.L., Focht, D.D., and Ting, I.P., Nitrogen Fixation, Denitrification, and Pleomorphic Growth in a Highly Pigmented Spirillum lipoferum, Appl. Environ. Microbiol., 1977, vol. 34, pp. 582–585.PubMedGoogle Scholar
  20. 20.
    Papen, H. and Werner, D., Organic Acid Utilization, Succinate Excretion, Encystation and Oscillating Nitrogenase Activity in Azospirillum brasilense under Microaerobic Conditions, Arch. Microbiol., 1982, vol. 132, pp. 57–61.CrossRefGoogle Scholar
  21. 21.
    Berg, R.H., Tyler, M.E., Novick, N.J., Vasil, V., and Vasil, I.K., Biology of Azospirillum-Sugar Cane Association: Enhancement of Nitrogenase Activity, Appl. Environ. Microbiol., 1980, vol. 39, pp. 642–649.PubMedGoogle Scholar
  22. 22.
    Amman, R.I., Ludwig, W., and Schleifer, K.H., Phylogenetic Identification and in situ Detection of Individual Microbial Cells Without Cultivation, Microb. Rev., 1995, vol. 59, no. 1, pp. 143–169.Google Scholar
  23. 23.
    Möter, A. and Göbel, U.B., Fluorescence in Situ Hybridization (FISH) for Direct Visualization of Microorganisms, J. Microbiol. Methods, 2000, vol. 41, pp. 85–112.PubMedCrossRefGoogle Scholar
  24. 24.
    Katupitiya, S., Millet, J., Vesk, M., Viccars, L., Zeman, A., Lidong, Z., Elmerich, C., and Kennedy, I.R., A Mutant of Azospirillum brasilense Sp7 Impaired in Flocculation with a Modified Colonization Pattern and Superior Nitrogen Fixation in Association with Wheat, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1987–1995.PubMedGoogle Scholar
  25. 25.
    Biondi, E.G., Marini, F., Altieri, F., Bonzi, L., Bazzicalupo, M., and del Gallo, M., Extended Phenotype of an mreB-Like Mutant in Azospirillum brasilense, Microbiology (UK), 2004, vol. 150, pp. 2465–2474.Google Scholar
  26. 26.
    O’Connor, K.A. and Zusman, D.R., Development in Myxococcus xanthus Involves Differentiation into Two Cell Types, Peripheral Rods and Spores, J. Bacteriol., 1991, vol. 173, no. 11, pp. 3318–3333.PubMedGoogle Scholar
  27. 27.
    Nikitina, V.E., Ponomareva, E.G., Alen’kina, S.A., and Konnova, S.A., The Role of Cell-Surface Lectins in the Aggregation of Azospirilla, Mikrobiologiya, 2001, vol. 70, no. 4, pp. 471–476 [Microbiology (Engl. Transl.), vol. 70, no. 4, pp. 408–412].Google Scholar
  28. 28.
    Konnova, S.A., Makarov, O.E., Skvortcov, I.M., and Ignatov, V.V., Isolation, Fractionation and Some Properties of Polysaccharides Produced in a Bound Form by Azospirillum brasilense and Their Possible Involvement in Azospirillum-Wheat Root Interactions, FEMS Microbiol. Letts., 1994, vol. 118, no. 2, pp. 93–100.CrossRefGoogle Scholar
  29. 29.
    El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 380–389].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. L. Mulyukin
    • 1
  • N. E. Suzina
    • 2
  • A. Yu. Pogorelova
    • 1
  • L. P. Antonyuk
    • 3
  • V. I. Duda
    • 2
  • G. I. El-Registan
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations