Microbiology

, Volume 77, Issue 4, pp 455–465 | Cite as

Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas

  • A. L. Mulyukin
  • N. E. Suzina
  • V. I. Duda
  • G. I. El’-Registan
Experimental Articles

Abstract

Cystlike resting cells (CRC) of non-spore-forming gram-negative bacteria of the genus Pseudomonas, P. aurantiaca and P. fluorescens, were obtained and characterized for the first time; their physiological and morphological diversity was demonstrated. The following properties were common for all the revealed types of CRC as dormant forms: (1) long-term (up to 6 months or longer) maintenance of viability in the absence of culture growth and cell respiration; (2) absence of an experimentally detectable level of metabolism; (3) higher resistance to damage and autolysis under the action of provoking factors than in metabolically active vegetative cells; and (4) specific features of ultrastructural organization absent in vegetative cells: thickened and lamellar envelopes, clumpy structure of the cytoplasm, and condensed DNA in nucleoid. The differences in various types of CRC concern the thickness and lamellar structure of cell envelopes, as well as the presence and thickness of the capsular layer. In particular, forms ultrastructurally similar to typical bacterial cysts were revealed in pseudomonad populations growing on soil agar. Physiological diversity was revealed in different levels of viability preservation and thermal resistance in various types of CRC and depended on the conditions of their formation. The optimal conditions and procedures for obtaining P. aurantiaca and P. fluorescens CRC that retain the ability to form colonies on standard nutrient media are as follows: (1) a twofold decrease of nitrogen content in the growth medium; (2) an increased level of anabiosis autoinducer (C12-AHB, 10−4 M) in stationary cultures; (3) transfer of the cells from stationary cultures to a starvation medium with silica; (4) cultivation in soil extract; and (5) development of cultures on soil agar. The CRC from the cultures grown in soil extract or starvation medium with silica proved to be resistant to heat treatment (60°C, 5 min). In the CRC formed in nitrogen-limited media, the degree of heat resistance increased at longer incubation (1.5 to 6 months). CRCs on soil agar surface were resistant to desiccation. The ultrastructure of the morphologically varied types of P. aurantiaca CRC formed under simulated natural conditions is described for the first time. The data on the intraspecies diversity of pseudomonad dormant forms contribute to the concept of plasticity of the life style and adaptive reactions that ensure survival of these bacteria in unfavorable environmental conditions.

Key words

dormancy cystlike cells anabiotic cells stress resistance polymorphism of dormant forms anabiosis autoinducers alkyl hydroxybenzenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, E.R.B., Tindal, B.T., Martins des Santos, V.A.P., Pieper, D.H., Ramos, J.-L., and Paleroni, N.J., Nonmedical Pseudomonas, in Prokaryotes, Dworkin, M. et al., Eds., 2006, vol. 6, pp. 646–703.Google Scholar
  2. 2.
    Paleroni, M.J., Genus I. Pseudomonas, in Bergey’s Manual of Systematic Bacteriology, Brenner, D.J., Krieg, N.R., Staley, J.T., and Garrity, G.M., Eds., East Lansing: Springer, 2005, vol. 2, pp. 323–379.Google Scholar
  3. 3.
    Binnerup, S.J., Jensen, D.F., Thordal-Christensen, H., and Sorensen, J., Detection of Viable but Non-Culturable Pseudomonas fluorescens DF57 in Soil Using a Microcolony Epifluorescence Technique, FEMS Microbiol. Ecol., 1993, vol. 12, pp. 97–105.CrossRefGoogle Scholar
  4. 4.
    Oliver, J.D., McDougald, D., Barett, T., Glover, L.A., and Prosser, J.I., Effect of Temperature and Plasmid Carriage on Nonculturability in Organisms Targeted for Release, FEMS Microbiol. Ecol., 1995, vol. 17, pp. 229–237.CrossRefGoogle Scholar
  5. 5.
    Troxler, J., Zala, M., Moenne-Loccoz, Y., Keel, C., and Défago, G., Predominance of Nonculturable Cells of the Biocontrol Strain Pseudomonas fluorescens CHA0 in the Surface Horizon of Large Outdoor Lysimeters, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3776–3782.PubMedGoogle Scholar
  6. 6.
    Normander, B., Hendriksen, N.B., and Nybroe, O., Green Fluorescent Protein-Marked Pseudomonas fluorescens: Localization, Viability, and Activity in the Natural Barley Rhizosphere, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4646–4651.PubMedGoogle Scholar
  7. 7.
    Shevtsova, I.I. and Ukrainskii, V.V., Resting froms of Pseudomonas fluorescens, Tez. II Resp. nauchn. konf. (Proc. II Republican Sci. Conf.), Tashkent, 1978, pp. 58–59.Google Scholar
  8. 8.
    Zechman, J.M. and Casida, L.E., Death of Pseudomonas aeruginosa in Soil, Can. J. Microbiol., 1982, vol. 28, pp. 788–794.PubMedCrossRefGoogle Scholar
  9. 9.
    El’-Registan, G.I., Tsyshnatii, G.V., Duzha, M.V., Pronin, S.V., Mityushina, L.L., Savel’eva, N.D., Kaprel’yants, A.S., and Sokolov, Yu.M., Regulation of Growth and Development of Pseudomonas carboxydoflava by Specific Endogenous Factors, Mikrobiologiya, 1980, vol. 49, no. 4, pp. 561–565.Google Scholar
  10. 10.
    Svetlichnyi, V.A., Romanova, A.K., and El’-Registan, G.I., Qualitative Content of Membrane Autoregulators during Lithoautotrophic Growth of Pseudomonas carboxydoflava, Mikrobiologiya, 1986, vol. 55, no. 1, pp. 55–59.Google Scholar
  11. 11.
    Osipov, G.A., El’-Registan, G.I., Svetlichnyi, V.A., Kozlova, A.N., Duda, V.I., Kaprel’yants, A.S., and Pomazanov, V.V., On the Chemical Nature of the Pseudomonas carboxydoflava d Autoregulatory Factor, Mikrobiologiya, 1985, vol. 54, no. 2, pp. 186–190.Google Scholar
  12. 12.
    Bogosian, G., Aardema, N.D., Bourneuf, E.V., Morris, P.J.L., and O’Neil, J.P., Recovery of Hydrogen Peroxide-Sensitive Culturable Cells of Vibrio vulnificus Gives the Appearance of Resuscitation from a Viable But Nonculturable State, J. Bacteriol., 2000, vol. 182, no. 18, pp. 5070–5075.PubMedCrossRefGoogle Scholar
  13. 13.
    Suzina, N.E., Mulyukin, A.L., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of Resting Cells of Some Non-Spore-Forming Bacteria, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 516–529 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 435–447].Google Scholar
  14. 14.
    Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’Registan, G.I., Formation of Resting Cells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 683–689].Google Scholar
  15. 15.
    Sudo, S.Z. and Dworkin, M., Comparative Biology of Procaryotic Resting Cells, Adv. Microb. Physiol., 1973, vol. 9, pp. 153–224.PubMedCrossRefGoogle Scholar
  16. 16.
    Evdokimova, N.V., Dorofeev, A.G., and Panikov, N.S., Dynamics of Survival and Transition to the Dormant State in Pseudomonas fluorescens under Nitrogen Starvation, Mikrobiologiya, 1994, vol. 63, no. 2, pp. 195–203.Google Scholar
  17. 17.
    Kaprelyants, A.S., Gottshal, J.C., and Kell, D.B., Dormancy in Nonsporulating Bacteria, FEMS Microbiol. Rev., 1993, vol. 104, pp. 271–286.CrossRefGoogle Scholar
  18. 18.
    Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R., and Barer, M.R., Viability and Activity in Readily Culturable Bacteria: a Review and Discussion of the Practical Issues, Antonie van Leeuwenhoek, 1998, vol. 73, pp. 169–187.PubMedCrossRefGoogle Scholar
  19. 19.
    Mulyukin, A.L., Vakhrushev, M.A., Strazhevskaya, N.B., Shmyrina, A.S., Zhdanov, R.I., Suzina, N.E., Duda, V.I., Kozlova, A.N., and El’-Registan, G.I., Effect of Alkylhydroxybenzenes, Microbial Anabiosis Inducers, on the Structural Organization of Pseudomonas aurantiaca DNA and on the Induction of Phenotypic Dissociation, Mikrobiologiya, 2005, vol. 74, no. 2, pp. 157–165 [Microbiology (Engl. Transl.), vol. 74, no. 2, pp. 128–135].Google Scholar
  20. 20.
    Kozubek, A., Pietr, S., and Czerwonka, A., Alkylresorcinols Are Abundant Lipid Components in Different Strains of Azotobacter chroococcum and Pseudomonas spp., J. Bacteriol., 1996, vol. 178, no. 14, pp. 4027–4031.PubMedGoogle Scholar
  21. 21.
    Kozubek, A. and Tyman, J.H.P., Resorcinolic Lipids, the Natural Non-Isoprenoid Phenolic Amphiphiles and Their Biological Activity, Chem. Rev., 1999, vol. 99, no. 1, pp. 1–29.PubMedCrossRefGoogle Scholar
  22. 22.
    van Overbeek, L.S., Eberl, L., Givskov, M., Molin, S., and van Elsas, J.D., Survival of and Induced Stress Resistance in Pseudomonas fluorescens Cells Residing in Soil, Appl. Environ. Microbiol., 1995, vol. 61, pp. 4202–4208.PubMedGoogle Scholar
  23. 23.
    Layne, J.S. and Johnson, E.J., Resistant Properties of Azotobacter Cysts Induced in Response to Mineral Deficiencies, J. Bacteriol., 1964, vol. 88, pp. 956–959.PubMedGoogle Scholar
  24. 24.
    Cabiscol, E., Tamarit, J., and Ros, J., Oxidative Stress in Bacteria and Protein Damage by Reactive Oxygen Species, Int. Microbiol, 2000, vol. 3, no. 1, pp. 3–8.PubMedGoogle Scholar
  25. 25.
    Garduño, R.A., Garduño, E., Hiltz, P., and Hoffman, P.S., Intracellular Growth of Legionella pneumophila Gives Rise To a Differentiated Form Dissimilar To Stationary-Phase Forms, Infect. Immun., 2002, vol. 70, no. 11, pp. 6273–6283.PubMedCrossRefGoogle Scholar
  26. 26.
    Sadoff, H.L., Encystment and Germination in Azotobacter vinelandii, Bacteriol. Rev., 1975, vol. 39, no. 4, pp. 516–539.PubMedGoogle Scholar
  27. 27.
    Sadasivan, L. and Neyra, C.A., Flocculation in Azospirillum brasilense and A. lipoferum: Exopolysaccharides and Cyst Formation, J. Bacteriol., 1985, vol. 163, pp. 716–723.PubMedGoogle Scholar
  28. 28.
    Roszak, D.B. and Colwell, R.R., Metabolic Activity of Bacterial Cells Enumerated by Direct Viable Count, Appl. Environ. Microbiol., 1987, vol. 53, no. 12, pp. 2889–2893.PubMedGoogle Scholar
  29. 29.
    Costerton, J.W., Camper, A.K., Stewart, P.S., Zelver, N., and Dirckx, M.E., The Problem: Not Just Bacteria-Bacterial Biofilms, The Analyst, 1999, vol. 6, no. 3, pp. 18–25.Google Scholar
  30. 30.
    Xu, K.D., Stewart, P.S., Xia, F., Huang, C.-T., and McFeters, G.A., Spatial Physiological Heterogeneity in Pseudomonas aeruginosa Biofilm Is Determined by Oxygen Availability, Appl. Environ. Microbiol., 1998, vol. 64, no. 10, pp. 4035–4039.PubMedGoogle Scholar
  31. 31.
    Suzina, N.E., Mulyukin, A.L., Dmitriev, V.V., Nikolaev, Yu.A., Shorokhova, A.P., Bobkova, Yu.S., Barinova, E.S., Plakunov, V.K., El-Registan, G.I., and Duda, V.I., The Structural Bases of Long-Term Anabiosis in Non-Spore-Forming Bacteria, J. Adv. Space Res, 2006, vol. 38, pp. 1209–1219.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. L. Mulyukin
    • 1
  • N. E. Suzina
    • 2
  • V. I. Duda
    • 2
  • G. I. El’-Registan
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesMoscow oblastRussia

Personalised recommendations