, Volume 77, Issue 2, pp 176–180 | Cite as

Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics

  • I. N. Feklistova
  • N. P. Maksimova
Experimental Articles


N-methyl-N′-nitro-N-nitrosoguanidine (NG)-induced mutagenesis with subsequent selection for resistance to toxic amino acid analogues (azaserine, m-fluoro-DL-phenylalanine, and 6-diazo-5-oxo-L-norleucine) was applied to Pseudomonas aurantiaca B-162. The resulting strains produced phenazine antibiotics three times more efficiently than the wild type strain and ten times more efficiently than the known pseudomonad strains. Overproduction of phenazine antibiotics was shown to result either from deregulation of 3-deoxy-D-arabinohepulosonate-7-phosphate synthase (DAHP synthase), the key enzyme of the aromatic pathway (removal of inhibition by phenylalanine, tyrosine, and phenazine), or overproduction of N-hexanoyl homoserine lactone, the regulatory molecules of positive control of cellular metabolism (QS systems).

Key words

Pseudomonas phenazine antibiotics producers mutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, R.J., Thomashow, L.S., Weller, D.M., Fujimoto, D., Mazzola, M., Bangera, G., and Kim, D.S., Molecular Mechanisms of Defense by Rhizobacteria Against Root Disease, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 10, pp. 4197–4201.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Banna, N. and Winkelmann, G., Pyrrolnitrin from Burkholderia cepacia: Antibiotic Activity Against Fungi and Novel Activities Against Streptomycetes, J. Appl. Microbiol., 1998, vol. 85, no. 1, pp. 69–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Whipps, J.M., Microbial Interactions and Biocontrol in the Rhizosphere, J. Experim. Bot., 2001, vol. 52, no. 1, pp. 487–511.Google Scholar
  4. 4.
    Dwivedi, D., Johri. B.N. Antifungals from Fluorescent Pseudomonads: Biosynthesis and Regulation, Curr. Sci., 2003, vol. 85, no. 12, pp. 1693–1703.Google Scholar
  5. 5.
    Mavrodi, D.V., Bleimling, N., Thomashow, L.S., and Blankenfeldt, W., The Purification, Crystallization and Preliminary Structural Characterization of PhzF, a Key Enzyme in the Phenazine-Biosynthesis Pathway from Pseudomonas fluorescens 2-79, Acta Crystallogr., 2004, vol. 60, no. 1, p. 184–186.Google Scholar
  6. 6.
    Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., Cook, R.J., Boronin, A.M., and Thomashow, L.S., A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Peudomonas fluorescens 2-79, J. Bacteriol., 1998, vol. 180, no. 9, pp. 2541–2548.PubMedGoogle Scholar
  7. 7.
    Hassan, H.M. and Fridovich, I., Mechanism of the Antibiotic Action of Pyocyanine, J. Bacteriol., 1980, vol. 141, no. 1, pp. 156–163.PubMedGoogle Scholar
  8. 8.
    Ahmad, S., Weisburg, W., and Jensen, R., Evolution of Aromatic Amino Acid Biosynthesis and Application to the Fine-Tuned Phylogenetic Positioning of Enteric Bacteria, J. Bacteriol., 1990, vol. 172, no. 2, pp. 1051–1061.PubMedGoogle Scholar
  9. 9.
    Maksimova, N.P., Olekhnovich, I.N., and Fomichev, Yu.K., Regulation of 3-deoxy-D-arabinoheptulose-7-phosphate Synthase Synthesis in Pseudomonas Bacteria, Genetika, 1991, vol. 27, no. 2, pp. 217–221.PubMedGoogle Scholar
  10. 10.
    Haas, D., Blumer, C., and Keel, C., Biocontrol Ability of Fluorescent Pseudomonads Genetically Dissecred: Importance of Positive Feedback Regulation, Curr. Opin. Biotechnol., 2000, vol. 11, no. 3, pp. 290–297.PubMedCrossRefGoogle Scholar
  11. 11.
    Haas, D. and Keel, C., Regulation of Antibiotic Production in Root-Colonizing Pseudomonas spp. and Relevance for Biological Control of Plant Disease, Annu. Rev. Phytopathol., 2003, vol. 41, no. 1, pp. 117–153.PubMedCrossRefGoogle Scholar
  12. 12.
    Feklistova, I.N. and Maksimova, N.P., Synthesis of Phenazine Compounds by Pseudomonas aurantiaca, Vest. Belorus. Un-ta, Ser. 2: Chemistry. Biology. Geography, 2005, no. 2, pp. 66–69.Google Scholar
  13. 13.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.Google Scholar
  14. 14.
    Levitch, M.E., Regulation of Aromatic Amino Acid Biosynthesis in Phenazine-Producing Strains, J. Bacteriol., 1970, vol. 103, no. 1, pp. 16–19.PubMedGoogle Scholar
  15. 15.
    Jensen, R.A. and Nester, E.W., Regulatory Enzymes of Aromatic Amino Acid Biosynthesis in Bacillus subtilis, J. Biol. Chem., 1966, vol. 241, no. 14, pp. 3365–3372.PubMedGoogle Scholar
  16. 16.
    McClean, K.H., Winson, M., Fish, L., Taylor, A., Chhabra, S.R., Camara, M., Daykin, M., Lamb, J.H., Swift, S., Bycroft, B.W., Stewart, G.S.A.B., and Williams, P., Bycroft, B.W., Stewart, G.S.A.B., and Williams, P., Quorum Sensing and Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acylhomoserine Lactones, Microbiology (UK), 1997, vol. 143, no. 12, pp. 3703–3711.CrossRefGoogle Scholar
  17. 17.
    Huang, Z., Bonsall, R.F., Mavrodi, D.V., Weller, D.M., and Thomashow, L.S., Transformation of Pseudomonas fluorescens with Genes for Biosynthesis of Phenazine-1-Carboxylic Acid Improves Biocontrol of Rhizoctonia Root Rot and in situ Antibiotic Production, FEMS Microbiol. Ecol., 2004, vol. 49, no. 1, pp. 243–251.PubMedGoogle Scholar
  18. 18.
    Wood, D., Gong, F., Daykin, M., Williams, P., and Pierson, L.S., N-Acyl-Homoserine Lactone-Mediated Regulation of Phenazine Gene Expression by Pseudomonas aureofaciens 30–84 in the Wheat Rhizosphere, J. Bacteriol., 1997, vol. 179, no. 24, pp. 7663–7670.PubMedGoogle Scholar
  19. 19.
    Hermann, K.M., Biochemical and Genetic Studies of Aromatic Amino Acid Biosynthesis, J. Biochem., 1966, vol. 315, pp. 494–498.Google Scholar
  20. 20.
    Bertani, I. and Venturi, V., Regulation of the N-Acyl Homoserine Lactone-Dependent Quorum-Sensing System in Rhizosphere Pseudomonas putida WCS358 and Cross-Talk with the Stationary-Phase RpoS Sigma Factor and the Global Regulator GacA, Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5493–5502.PubMedCrossRefGoogle Scholar
  21. 21.
    Ge, Y., Huang, X., Wang, S., Zhang, X., and Xu, Y., Phenazine-1-Carboxylic Acid Is Negatively Regulated and Pyoluteorin Regulated by gacA in Pseudomonas sp. M18, FEMS Microbiol. Letts., 2004, vol. 237, no. 1, pp. 41–47.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Belarus State University, MinskMinskBelarus

Personalised recommendations