, 77:159 | Cite as

Metabolism of the thermophilic bacterium Oceanithermus profundus

  • D. V. Fedosov
  • D. A. Podkopaeva
  • M. L. Miroshnichenko
  • E. A. Bonch-Osmolovskaya
  • A. V. Lebedinsky
  • M. Yu. Grabovich
Experimental Articles


The metabolism of the novel facultatively anaerobic thermophilic bacterium Oceanithermus profundus was studied during growth on maltose, acetate, pyruvate, and hydrogen. The utilization of carbohydrates was shown to proceed via the glycolytic pathway. Under microaerobic growth conditions, the metabolism of O. profundus grown on maltose depended on the substrate concentration. At an initial maltose concentration of 1.4 mM, O. profundus carried out oxygen respiration, and in the presence of 3.5 mM maltose, facilitated fermentation occurred, with the formation of acetate and ethanol and limited involvement of oxygen. The use of pyruvate and acetate occurred via the TCA cycle. In cells grown on acetate, the activity of glyoxylate pathway enzymes was revealed. Depending on the energy-yielding process providing for growth (oxygen respiration or nitrate reduction), cells contained cytochromes a and c or b, respectively. The results obtained demonstrate the plasticity of the metabolism of O. profundus, which thus appears to be well-adjusted to the rapidly changing conditions in deep-sea hydrothermal vents.

Key words

Oceanithermus profundus oxygen respiration nitrate reduction the TCA cycle 


  1. 1.
    Williams, R.A.D. and Da Costa, M.S., The Genus Thermus and Related Microorganisms, The Prokaryotes, 2nd ed., Balows A., Truper H. G., Dworkin M., Harder W., and Schleifer K.-H., Eds., New York: Springer, 1992, pp. 3745–3753.Google Scholar
  2. 2.
    Miroshnichenko, M.L., L’Haridon, S., Jeanthon, C., Antipov, A.N., Kostrikina, N.A., Chernyh, N.A., Tindall, B., Schumann, P., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Oceanithermus profundus gen. nov., sp. nov., a Thermophilic, Microaerophilic Facultatively Chemolithoheterotrophic Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 747–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Balch, W.E., Fox, G.E., Magnum, G.E., Woes, G.E., and Wolf, R.S., Methanogens: Reevaluation of Unique Biological Group, Microbiol. Rev., 1979, vol. 43, pp. 260–296.PubMedGoogle Scholar
  4. 4.
    Wolin, E.A., Wolin, M.J., and Wolf, R.S., Formation of Methane by Bacterial Extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2888.PubMedGoogle Scholar
  5. 5.
    Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Pimenov, N.V., Tourova, T.P., Antipov, A.N., Spring, S., Stackenbrandt, E., and Bonch-Osmolovskaya, E.A., Caldithrix abyssi gen. nov., sp. nov., a Novel Thermophilic Nitrate-Reducing Bacterium from a Mid-Atlantic Ridge Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 323–329.PubMedCrossRefGoogle Scholar
  6. 6.
    Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981.Google Scholar
  7. 7.
    Lowry, O.H., Rosebrough, D.C., Farr, A., and Randall, K.G., Protein Measurement with the Folin Phenol Reagent, Biol. Chem., 1951, vol. 193, pp. 265–275.Google Scholar
  8. 8.
    Fedosov, D.V., Podkopaeva, D.A., Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Lebedinsky, A.V., and Grabovich, M.Yu., Investigation of the Catabolism of Acetate and Peptides in the New Anaerobic Thermophilic Bacterium Caldithrix abyssi, Mikrobiologiya, 2006, vol. 75, pp. 154–159 [Microbiology (Engl. Transl.), vol. 75, no. 2, pp. 119–124].Google Scholar
  9. 9.
    Grabovich, M.Yu., Dubinina, G.A., Churikova, V.V., Glushkov, A.F., and Churikov, S.N., Peculiarities of the Carbon Metabolism of the Colorless Sulfur Bacterium Macromonas bipunctata, Mikrobiologiya, 1993, vol. 62, pp. 421–429.Google Scholar
  10. 10.
    Gokarn, R.R., Eiteman, M.A., and Altman, E., Metabolic Analysis of Escherichia coli in the Presence and Absence of the Carboxylating Enzymes Phosphoenolpyruvate Carboxylase and Pyruvate Carboxylase, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1844–1850.PubMedCrossRefGoogle Scholar
  11. 11.
    Schramm, A., Siebers, B., Tjaden, B., Brinkmann, H., and Hensel, R., Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects, J. Bacteriol., 2000, vol. 182, pp. 2001–2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Helo, H. and Sirevag, R., Autotrophic Growth and CO2 Fixation of Chloroflexus aurantiacus, Arch. Microbiol., 1986, vol. 145, pp. 173–180.CrossRefGoogle Scholar
  13. 13.
    Dubinina, G.A., Grabovich, M.Yu., and Chernyshova, Yu.Yu., The Role of Oxygen in the Regulation of the Metabolism of Aerotolerant Spirochetes, a Major Component of “Thiodendron” Bacterial Sulfur Mats, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 725–733 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 621–628].Google Scholar
  14. 14.
    Romanova, A.K., Biokhimicheskie metody izucheniya avtotrofii u mikroorganizmov (Biochemical Methods for Studying Autotrophy in Microorganisms), Moscow: Nauka, 1980.Google Scholar
  15. 15.
    Gossner, A.S., Devereux, R., Ohnemuller, N., Acker, G., Stackebrandt, E., and Drake, H.L., Thermicanus aegyptius gen. nov., sp. nov., Isolated from Oxic Soil, a Fermentative Microaerophile That Grows Commensally with the Thermophilic Acetogen Moorella thermoacetica, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5124–5133.PubMedGoogle Scholar
  16. 16.
    Singer, T.P.. and Edmondson, D.E., Mitochondrial Electron-Transport Inhibitors, Methods Enzymol., 1979, vol. 55 F, pp. 454–462.CrossRefGoogle Scholar
  17. 17.
    Degryse, E. and Glansdorff, N., Studies on the Central Metabolism of Thermus aquaticus, an Extreme Thermophilic Bacterium: Anaplerotic Reactions and Their Regulation, Arch. Microbiol., 1981, vol. 129, pp. 173–177.CrossRefGoogle Scholar
  18. 18.
    Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Lienard, T., Gohl, O., Martinez-Arias, R., Jacobi, C., Starkuviene, V., Schlenczeck, C., Dencker, S., Huber, R., Klenk, H.-P., Kramer, W., Merkl, R., Gottschalk, G., and Fritz, H.-J., The Genome Sequence of the Extreme Thermophile Thermus thermophilus, Nature Biotechnol., 2004, vol. 22, pp. 547–553.CrossRefGoogle Scholar
  19. 19.
    Niimura, Y., Koh, E., Uchimura, T., Ohara, N., and Kozaki, M., Aerobic and Anaerobic Metabolism in a Facultative Anaerobe Ep01 Lacking Cytochrome, Quinone and Catalase, FEMS Microbiol. Lett., 1989, vol. 61, pp. 79–84.CrossRefGoogle Scholar
  20. 20.
    Con, A.L., Active Role of Oxygen and NADH-Oxidase in Growth and Energy Metabolism of Leuconostoc, J. Gen. Microbiol., 1986, vol. 132, pp. 1789–1796.Google Scholar
  21. 21.
    Varghese, S., Tang, Y., and Imlay, J.A., Contrasting Sensitivities of Escherichia coli Aconitases A and B to Oxidation and Iron Depletion, J. Bacteriol., 2003, vol. 185, pp. 221–230.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • D. V. Fedosov
    • 1
  • D. A. Podkopaeva
    • 1
  • M. L. Miroshnichenko
    • 2
  • E. A. Bonch-Osmolovskaya
    • 2
  • A. V. Lebedinsky
    • 2
  • M. Yu. Grabovich
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations