Advertisement

Microbiology

, Volume 77, Issue 1, pp 39–46 | Cite as

Electron microscopic detection and in situ characterization of bacterial nanoforms in extreme biotopes

  • V. V. Dmitriev
  • N. E. Suzina
  • T. G. Rusakova
  • P. Yu. Petrov
  • R. R. Oleinikov
  • T. Z. Esikova
  • V. P. Kholodenko
  • V. I. Duda
  • A. M. Boronin
Experimental Articles

Abstract

The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1–3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29–43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of ≤ 0.3 μm and volume of ≤ 0.014 μm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18–0.20 × 0.20–0.30 μm in size, forming in situ spherical aggregates (microcolonies) of dividing cells. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.

Key words

nanoforms ultramicrobacteria microorganisms in situ cell ultrastructure extreme biotopes fractionation of microorganisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schut, F., de Vries, E.J., Gottschal, J.C., Robinson, B.R., Harder, W., Prins, R.A., and Button, D.K., Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintanance, and Characteristics of Isolates under Laboratory Conditions, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2150–2160.PubMedGoogle Scholar
  2. 2.
    Cavicchioly, R. and Ostrowski, M., Ultramicrobacteria, Encyclopedia of Life Sciences, MacMillan Publishers Ltd, Nature Publishing Group, pp. 1–3. www.els.netGoogle Scholar
  3. 3.
    Hahn, M.W., Lunsdorf, H., Wu, Q., Schauer, M., Hofle, M.G., Boenigk, J., and Stadler, P., Isolation of Novel Ultramicrobacteria Classified as Actinobacteria, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1442–1451.CrossRefPubMedGoogle Scholar
  4. 4.
    Janssen, P.H., Schuhmann, A., Mörschel, E., and Rainey, F.A., Novel Anaerobic Ultramicrobacteria Belonging to the Verrucomicrobiales Lineage of Bacterial Descent Isolated by Dilution Culture from Anoxic Rice Paddy Soil, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1382–1388.PubMedGoogle Scholar
  5. 5.
    Miyoshi, T., Iwatsuki, T., and Naganuma, T., Phylogenetic Characterization of 16S rRNA Gene Clones from Deep-Groundwater Microorganisms That Pass through 0.2-Micrometer-Pore-Size Filters, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1084–1088.CrossRefPubMedGoogle Scholar
  6. 6.
    Elsaied, H., Sato, M., and Naganuma, T., Viable Cytophaga-Like Bacterium in the 0.2 μm-Filtrate Seawater, Syst. Appl. Microbiol., 2001, vol. 618–622.Google Scholar
  7. 7.
    Panikov, N.S., Contribution of Nanosized Bacteria to the Total Biomass and Activity of a Soil Microbial Community, Adv. Appl. Microbiol., 2005, vol. 57, pp. 245–296.CrossRefPubMedGoogle Scholar
  8. 8.
    Bae, H.C., Cota-Robles, E.H., and Casida, L.E., Microflora of Soil as Viewed by Transmission Electron Microscopy, Appl. Microbiol., 1972, vol. 23, no. 3, pp. 637–648.PubMedGoogle Scholar
  9. 9.
    McKay, D.S., Gibson, E.K., Thomas-Keptra, K.L., Vali, H., Romanek, C.S., Clemett, S.T., Chillier, X.D.F., Maechling, C.R., and Zare, R.N., Search for Past Life on Mars: Possible Relic Activity in Martian Meteorite ALH 84001, Science, 1996, vol. 273, pp. 924–930.CrossRefPubMedGoogle Scholar
  10. 10.
    Folk, R.L., SEM Imaging of Bacteria and Nanobacteria in Carbonate and Rocks, J. Sediment Petrol., 1993, vol. 63, pp. 990–999.Google Scholar
  11. 11.
    Kajander, E.O. and Ciftcioglu, N., Nanobacteria: An Alternative Mechanism for Pathogenic Intra- and Extracellular Calcification and Stone Formation, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 8274–8279.CrossRefPubMedGoogle Scholar
  12. 12.
    Giovannoni, S.T., Roppe, M.S., Vergin, K.L., and Adiar, N.L., 16S rRNA Genes Reveal Stratified Open Ocean Bacteriaplankton Population to the Green Non-Sulfur Bacteria, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 7979–7984.CrossRefPubMedGoogle Scholar
  13. 13.
    Balkwill, D.L., Labeda, D.P., and Casida, L.E. Jr., Simplified Procedures for Releasing and Concentrating Microorganisms from Soil for Transmission Electron Microscopy Viewing as Thin-Sectioned and Frozen-Etched Preparations, Can. J. Microbiol., 1975, vol. 21, no. 3, pp. 252–262.CrossRefPubMedGoogle Scholar
  14. 14.
    Faegri, A., Torsvik, V.L., and Goksoyr, J., Bacterial and Fungial Activites in Soil: Separation of Bacteria and Fungi by a Rapid Fractionated Centrifugation Technique, Soil Biol. Biochem., 1977, vol. 9, pp. 105–112.CrossRefGoogle Scholar
  15. 15.
    Bakken, L.R., Separation and Purification of Bacteria from Soil, Appl. Environ. Microbiol., 1985, vol. 49, pp. 1482–1487.PubMedGoogle Scholar
  16. 16.
    Dmitriev, V.V., Suzina, N.E., Rusakova, T.G., Gilichinskii, D.A., and Duda, V.I., Ultrastructural Characteristics of Natural Forms of Microorganisms Isolated from Permafrost Grounds of Eastern Siberia by the Method of Low-Temperature Fractionation, Doklady AN, 2001, vol. 378, no. 6, pp. 846–849 [Doklady Biol. Sci. (Engl. Transl.), vol. 378, no. 6, pp. 304–307.Google Scholar
  17. 17.
    Dmitriev, V.V., Suzina, N.E., Barinova, E.S., Duda, V.I., and Boronin, A.M, An Electron Microscopic Study of the Ultrastructure of Microbial Cells in Extreme Biotopes in situ, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 832–840 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 716–723].Google Scholar
  18. 18.
    Reynolds, E., The Use of Lead Citrate at High pH as an Electron Opaque Stain in Electron Microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.CrossRefPubMedGoogle Scholar
  19. 19.
    Duda, V.I., Suzina, N.E., Akimov, V.N., Vainshtein, M.B., Dmitriev, V.V., Barinova, E.S., Abashina, T.N., Oleinikov, R.R., Esikova, T.Z., and Boronin, A.M., Ultrastructural Organization and Development Cycle of Soil Ultramicrobacteria Belonging to the Class Alphaproteobacteria, Mikrobiologiya, 2007, vol. 76, no. 5, pp. 652–661 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 575–584].Google Scholar
  20. 20.
    Suzina, N.E., Mulyukin, A.L, Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of Resting Cells of Some Non-Spore-Forming Bacteria, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 516–529 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 435–447].Google Scholar
  21. 21.
    Suzina, N.E., Mulyukin, A.L., Dmitriev, V.V., Nikolaev, Yu.A., Shorokhova, A.P., Bobkova, Yu.S., Barinova, E.S., Plakunov, V.K., El-Registan, G.I., and Duda, V.I., The Structural Bases of Long-Term Anabiosis in Non-Spore-Forming Bacteria, Adv. Space Res., 2005, vol. 38, pp. 1209–1219.CrossRefGoogle Scholar
  22. 22.
    Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan, M., and Claverie, J., The 1,2-Megabait Sequence of Mimivirus, Science, 2004, vol. 306, pp. 1344–1350.CrossRefPubMedGoogle Scholar
  23. 23.
    Egushi, M., Ostrowski, M., Fegatella, F., Bowman, J., Nichols, D., Nishono, T., and Cavicchioli, R., Sphingomonas alaskensis Stain AFO1, an Abundant Oligotrophic Ultramicrobacterium from the North Pacific Ocean, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4945–4954.CrossRefGoogle Scholar
  24. 24.
    Giovannoni, S.L., Trip, H.G., Givan, S., Podar, M., Vergin, K.H., Baptista, D., Bibbs, L., Eads, J., Richardson, T.H., Noordevier, M., Rappe, M.S., Short, J.M., Carrington, J.C., and Mathur, E.J., Genome Streamlining in a Cosmopolitan Oceanic Bacterium, Science, 2005, vol. 309, pp. 1242–1245.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. V. Dmitriev
    • 1
    • 2
  • N. E. Suzina
    • 1
  • T. G. Rusakova
    • 1
  • P. Yu. Petrov
    • 2
  • R. R. Oleinikov
    • 1
  • T. Z. Esikova
    • 1
  • V. P. Kholodenko
    • 1
  • V. I. Duda
    • 1
    • 2
  • A. M. Boronin
    • 1
    • 2
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Pushchino State UniversityPushchino, Moscow oblastRussia

Personalised recommendations