, Volume 76, Issue 2, pp 125–138 | Cite as

Biofilm—“City of microbes” or an analogue of multicellular organisms?



The definition of the term “biofilm” and the validity of the analogy between these structured microbial communities and multicellular organisms are discussed in the review. The mechanisms of biofilm formation, the types of interrelations of the components of biofilms, and the reasons for biofilm resistance to biocides and stress factors are considered in detail. The role of biofilms in microbial ecology and in biotechnology is discussed.

Key words

biofilms microorganisms structured microbial communities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zobell, C.E., The Influence of Solid Surfaces Upon the Physiological Activities of Bacteria in Sea Water, J. Bacteriol., 1937, vol. 33, p. 86.Google Scholar
  2. 2.
    Zobell, C.E., The Effect of Solid Surfaces Upon Bacterial Activity, J. Bacteriol., 1943, vol. 46, pp. 39–56.PubMedGoogle Scholar
  3. 3.
    Costerton, J.W., Geesey, G.G., and Cheng, K.J., How Bacteria Stick, Sci. Am., 1978, vol. 238, pp. 86–95.PubMedGoogle Scholar
  4. 4.
    Zavarzin, G.A., Evolution of Microbial Communities throughout the History Earth, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-anthropogenic Biosphere Evolution), Moscow: Nauka, 1993, pp. 212–222.Google Scholar
  5. 5.
    Zavarzin, G.A., Paradigm Shift in Biology, Vest. Ross. Akad. Nauk, 1995, vol. 65, pp. 8–17.Google Scholar
  6. 6.
    Costerton, J.W., Overview of Microbial Biofilms, J. Industr. Microbiol., 1995, vol. 15, pp. 137–140.CrossRefGoogle Scholar
  7. 7.
    O’Toole, G.A., Kaplan, A.H., and Kolter, R., Biofilm Formation as Microbial Development, Annu. Rev. Microbiol., 2000, vol. 4, pp. 49–79.CrossRefGoogle Scholar
  8. 8.
    Watnick, P. and Kolter, R., Biofilm, City of Microbes, J. Bacteriol., 2000, vol. 182, pp. 2675–2679.PubMedCrossRefGoogle Scholar
  9. 9.
    Il’ina, T.S., Romanova, Yu.M., and Gintsburg, A.L., Biofilms as a Mode of Existence of Bacteria in External Environment and Host Body: The Phenomenon, Genetic Control, and Regulation Systems of Development, Genetika, 2004, vol. 40, pp. 1445–1456 [Russ. J. Genet. (Engl. Transl.), vol. 40, no. 11, pp. 1189–1198].PubMedGoogle Scholar
  10. 10.
    Paerl, H.W. and Pinckney, J.L., A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling, Microb. Ecol., 1996, vol. 31, pp. 225–247.PubMedCrossRefGoogle Scholar
  11. 11.
    Allan, V.J.M., Callow, M.F., Macaskie, L.E., and Paterson-Beedle, M., Effect of Nutrient Limitation and Phosphate Activity of Citrobacter sp., Microbiology (UK), 2002, vol. 148, pp. 277–288.Google Scholar
  12. 12.
    Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P., The Involvement of Cell-To-Cell Signals in the Development of a Bacterial Biofilm, Science, 1998, vol. 280, pp. 295–298.PubMedCrossRefGoogle Scholar
  13. 13.
    Ward, D.M., Ferris, M.J., Nold, S.C., and Bateson, M.M., A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1353–1370.PubMedGoogle Scholar
  14. 14.
    MacLeod F.A., Guiot S.R., and Costerton J.W. Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1598–1607.PubMedGoogle Scholar
  15. 15.
    Okabe, S., Ito, T.P., and Satoh, H., Sulfate-Reducing Bacterial Community Structure and Their Contribution to Carbon Mineralization in a Wastewater Biofilm Growing Under Microaerophilic Conditions, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 322–334.PubMedCrossRefGoogle Scholar
  16. 16.
    Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., and Daims, H., Microbial Community Composition and Function in Wastewater Treatment Plants, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 665–680.PubMedCrossRefGoogle Scholar
  17. 17.
    Kroes, I., Lepp, P.W., and Relman, D.A., Bacterial Diversity within the Human Subgingival Crevice, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 14547–14552.PubMedCrossRefGoogle Scholar
  18. 18.
    Kolenbrander, P.E., Oral Microbial Communities: Biofilms, Interactions, and Genetic Systems, Annu. Rev. Microbiol., 2000, vol. 54, pp. 413–437.PubMedCrossRefGoogle Scholar
  19. 19.
    Kolenbrander, P.E., Andersen, R.N., Blehert, D.S., Egland, P.G., Foster, J.S., and Palmer, R.J., Communication among Oral Bacteria, Microbiol. Mol. Biol. Rev., 2002, vol. 66, pp. 486–505.PubMedCrossRefGoogle Scholar
  20. 20.
    Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S., Bacterial Coaggregation: an Integral Process in the Development of Multi-Species Biofilms, Trends Microbiol., 2003, vol. 11, pp. 94–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Stoodley, P., Dodds, I., Boyle, J.D., and Lappin-Scott, H.M., Influence of Hydrodynamics and Nutrients on Biofilm Structure, J. Appl. Microbiol., 1999, vol. 85, pp. 19–28.Google Scholar
  22. 22.
    Klausen, M., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T., Involvement of Bacterial Migration in the Development of Complex Multicellular Structures in Pseudomonas aeruginosa Biofilms, Mol. Microbiol., 2003, vol. 50, pp. 61–68.PubMedCrossRefGoogle Scholar
  23. 23.
    De Beer, D. and Stoodley, P., Microbial Biofilms, New York: Springer, 2004.Google Scholar
  24. 24.
    Rice, S.A., Koh, K.S., Queck, S.Y., Labbate, M., Lam, K.W., and Kjelleberg, S., Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues, J. Bacteriol., 2005, vol. 187, pp. 3477–3485.PubMedCrossRefGoogle Scholar
  25. 25.
    Costerton, J.W., Lewandowski, Z.L., DeBeer, D., Caldwell, D., Korber, D., and James, G., Biofilms, the Customized Microniche, J. Bacteriol., 1994, vol. 1176, pp. 2137–2142.Google Scholar
  26. 26.
    Karsten, U. and Kuhl, M., Die Mikrobenmatte — das kleinste Ökosystem der Welt, Biologie Unzerer Zeit, 1996, vol. 26, pp. 16–26.CrossRefGoogle Scholar
  27. 27.
    Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R., Fruiting Body Formation by Bacillus subtilis, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11621–11626.PubMedCrossRefGoogle Scholar
  28. 28.
    Morikawa, M., Beneficial Biofilm Formation by Industrial Bacteria Bacillus subtilis and Related Species, J. Biosci. Bioengin., 2006, vol. 101, pp. 1–8.CrossRefGoogle Scholar
  29. 29.
    Mayser, P., Fromme, S., Leitzmann, C., and Grunder, K., The Yeast Spectrum of the ‘Tea Fungus Kombucha’, Mycoses, 1995, vol. 38, pp. 289–295.PubMedGoogle Scholar
  30. 30.
    Yurkevich, D.I. and Kutushenko, V.P., Medusomycete (Tea Fungus): Research History, Composition, Physiological and Metabolic Peculiarities, Biofizika, 2002, vol. 47, pp. 1116–1129 [Biopysics (Engl. Transl.), vol. 47, no. 6, pp. 1035–1048].Google Scholar
  31. 31.
    Bos, R., van der Mei, H.C., and Busscher, H.J., Physico-Chemistry of Initial Microbial Adhesive Interactions — Its Mechanisms and Methods for Study, FEMS Microbiol. Rev., 1999, vol. 23, pp. 179–230.PubMedCrossRefGoogle Scholar
  32. 32.
    Scannapieco, F.A., Torres, G.I., and Levine, M.J., Salivary Amylase Promotes Adhesion of Oral Streptococci To Hydroxyapatite, J. Dent. Res., 1995, vol. 74, pp. 1360–1366.PubMedGoogle Scholar
  33. 33.
    Davey, M.E. and O’Toole, G.A., Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 847–867.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Loosdrecht, M.C.H., Bacterial Adhesion, Wageningen, 1988.Google Scholar
  35. 35.
    Railkin, A.I., Protsessy kolonizatsii i zashchita ot bioobrastaniya (Colonization Processes and Protection from Biofouling), St. Petersburg: Izd-vo S-Peterburg, un-ta, 1998.Google Scholar
  36. 36.
    Piette, J.P. and Idziak, E.S., A Model Study of Factors Involved in Adhesion of Pseudomonas fluorescens to Meat, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2783–2791.PubMedGoogle Scholar
  37. 37.
    O’Toole, G.A. and Kolter, R., Flagellar and Twitching Motility Are Necessary for Pseudomonas aeruginosa Biofilm Development, Mol. Microbiol., 1998, vol. 30, pp. 295–304.PubMedCrossRefGoogle Scholar
  38. 38.
    Pratt, L.A. and Kolter, R., Genetic Analysis of Escherichia coli Biofilm Formation: Roles of Flagella, Motility, Chemotaxis and Type I Pili, Mol. Microbiol., 1998, vol. 30, pp. 285–293.PubMedCrossRefGoogle Scholar
  39. 39.
    Watnick, P.I. and Kolter, R., Steps in the Development of a Vibrio cholerae Biofilm, Mol. Microbiol., 1999, vol. 34, pp. 586–595.PubMedCrossRefGoogle Scholar
  40. 40.
    Sutherland, I.W., Biofilm Exopolysaccharides: a Strong and Sticky Framework, Microbiology (UK), 2001, vol. 147, pp. 3–9.Google Scholar
  41. 41.
    Brand, S.S., Vik, A., Friedman, L., and Kolter, R., Biofilms: the Matrix Revisited, Trends Microbiol., 2005, vol. 13, pp. 20–26.CrossRefGoogle Scholar
  42. 42.
    Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M., and Kjelleberg, S., Cell Death in Pseudomonas aeruginosa Biofilm Development, J. Bacteriol., 2003, vol. 185, pp. 4585–4592.PubMedCrossRefGoogle Scholar
  43. 43.
    Marshall, K.C, Mechanisms of Bacterial Adhesion at Solid-Water Interfaces, Bacterial adhesion (mechanisms and physiological significance), Savage, D.C. and Fletcher, M., Eds., NY-L: Plenum, 1985, pp. 133–155.Google Scholar
  44. 44.
    De Flaun, M.F., Oppenheimer, S.R., Streger, S., Condee, C.W., and Fletcher, M., Alteration in Adhesion, Transport and Membrane Characteristics in Adhesuin Deficient Pseudomonad, Appl. Environ. Microbiol., 1999, vol. 65, pp. 759–765.Google Scholar
  45. 45.
    Waar, K., van der Mei, H.C., Harmsen, J.M., Degener, J.E., and Busscher, H.J., Adhesion of Bile Drain Materials and Physicochemical Surface Properties of Enterococcus faecalis Strains Grown in the Presence of Bile, Appl. Environ. Microbiol, 2002, vol. 68, pp. 3855–3858.PubMedCrossRefGoogle Scholar
  46. 46.
    Busalmen, J.P. and de Sanchez, S.R., Influence of pH and Ionic Strength on Adhesion of a Wild Strain of Pseudomonas sp. to Titanium, J. Ind. Microbiol. Biotechnol, 2001, vol. 26, pp. 303–308.PubMedCrossRefGoogle Scholar
  47. 47.
    Van Schie, P.M. and Fletcher, M., Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5082–5088.PubMedGoogle Scholar
  48. 48.
    McEldowney, S. and Fletcher, M., Effect of pH, Temperature and Growth Condition on the Adhesion of a Gliding Bacterium and Three Nongliding Bacteria to Polysterene, Microbiol. Ecol., 1988, vol. 16, pp. 183–195.CrossRefGoogle Scholar
  49. 49.
    La Paglia, C. and Hartzell, P., Stress-Induced Production of Biofilm in the Hyperthermophile Archaeoglobus fulgidus, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3158–3163.Google Scholar
  50. 50.
    Gordon, A.S. and Millero, F.J., Electrolite Effect of an Estuarine Bacterium, Appl. Environ. Microbiol., vol. 47, pp. 495–499.Google Scholar
  51. 51.
    Rachid, S., Ohlsen, K., Witte, W., Hacker, J., and Ziebuhr, W., Effect of Subinhibitory Antibiotic Concentrations on Polysaccharide Intercellular Adhesion Expression in Biofilm-Forming Staphylococcus epidermidis, Antimicrob. Agents Chemoter., 2000, vol. 44, pp. 3357–3363.CrossRefGoogle Scholar
  52. 52.
    Morgan, P. and Dow, S, Bacterial Adaptation for Growth in Low Nutrient Environments, Microbes in extreme environments, Herbert, R.A. and Codd, G.A., Eds., 1987, L: Academic, pp. 187–214.Google Scholar
  53. 53.
    Jefferson, K.K., What Drives Bacteria to Produce a Biofilm?, FEMS Microbiol. Letts., 2004, vol. 236, pp. 163–173.Google Scholar
  54. 54.
    Stanley, N.R., Britton, R.A., Grossmann, A.D., and Lazazzera, B.A., Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays, J. Bacterol., 2003, vol. 185, pp. 1951–1957.CrossRefGoogle Scholar
  55. 55.
    Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Leieune, Ph., Landini, P., and Dorel, C., Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli Via Regulation of the CsdD Gene, J. Bacteriol., 2001, vol. 183, pp. 7213–7223.PubMedCrossRefGoogle Scholar
  56. 56.
    Otto, K. and Silhavy, T.J., Surface Sensing and Adhesion of Escherichia coli Controlled by Cpx-Signalling Pathway, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 2287–2292.PubMedCrossRefGoogle Scholar
  57. 57.
    Conlon, K.M., Humphreys, H., and O’Gara, J.P., IcaR Encodes a Transcriptional Repressor Involved in Environmental Regulation of ica Operon Expression and Biofilm Formation by Staphylococcus epidermis, J. Bacteriol., 2002, vol. 184, pp. 4400–4408.PubMedCrossRefGoogle Scholar
  58. 58.
    Wen, Z.T. and Burne, R.A., Functional Genomics Approach to Identifying Genes Required for Biofilm Development by Streptococcus mutants, Appl. Environ. Microbiol., 2002, vol. 68, pp. 1196–1203.PubMedCrossRefGoogle Scholar
  59. 59.
    London, J., Bacterial Adhesines, Ann. Rep. Med. Chem., 1991, vol. 26, pp. 229–237.CrossRefGoogle Scholar
  60. 60.
    Burshard, R.P. and Sorongon, M.L., A Gliding Bacterium Strain Inhibits Adhesion and Motility of Another Gliding Bacterium Strain in Marine Biofilm, Appl. Environm. Microbiol., 1998, vol. 64, pp. 4079–4083.Google Scholar
  61. 61.
    Nikolaev, Yu.A., Prosser, Dzh.I., and Vittli, R.I., Regulation of the Adhesion of Pseudomonas fluorescens Cells to Glass by Extracellular Volatile Compounds, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 352–355 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 287–290].Google Scholar
  62. 62.
    Nikolaev, Yu.A., Panikov, N.S., Lukin, S.M., and Osipov, G.A., Saturated C21–C33 Hydrocarbons Are Involved in the Self-Regulation of Pseudomonas fluorescens Adhesion to a Glass Surface, Mikrobiologiya, 2001, vol. 70, no. 2, pp. 174–181 [Microbiology (Engl. Transl.), vol. 70, no. 2, pp. 138–144].Google Scholar
  63. 63.
    Nikolaev, Yu.A. and Panikov, N.S., Extracellular Protease as a Reversible Adhesion Regulator in Pseudomonas fluorescens, Mikrobiologiya, 2002, vol. 71, no. 5, pp. 629–634 [Microbiology (Engl. Transl.), vol. 71, no. 5, pp. 541–545].Google Scholar
  64. 64.
    Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J.D., Lappin-Scott, H.M., and Costerton, J.W., Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms, Appl Environ Microbiol., 2001, vol. 67, pp. 5608–5613.PubMedCrossRefGoogle Scholar
  65. 65.
    Bockelman, U., Szewzyk, U., and Grohmann, E., A New Enzymatic Method for the Detachment of Particle Associated Soil Bacteria, J. Microbiol. Methods, 2003, vol. 55, pp. 201–211.CrossRefGoogle Scholar
  66. 66.
    Kaplan, J.B., Meyenhofer, M.F., and Fine, D.H., Biofilm Growth and Detachment of Actinobacillus actinomycetemcomitans, J. Bacteriol., 2003, vol. 185, pp. 1399–1404.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaplan, J.B., Ragunath, C., Ramasubbu, N., and Fine, D.H., Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous Beta-Hexosaminidase Activity, J. Bacteriol., 2003, vol. 185, pp. 4693–4698.PubMedCrossRefGoogle Scholar
  68. 68.
    Batrakov, S.G., Rodionova, T.A., Esipov, S.E., Polyakov, N.B., Sheichenko, V.I., Shekhovtsova, N.V., Lukin, S.M., Panikov, N.S., and Nikolaev, Yu.A., A Novel Lipopeptide, an Inhibitor of Bacterial Adhesion, from the Thermophilic and Halotolerant Subsurface Bacillus licheniformis Strain 603, Biochim. Biophys. Acta, 2003, vol. 1634, pp. 107–115.PubMedGoogle Scholar
  69. 69.
    Mireles, J.R., Toguchi, A., and Harshey, R.M., Salmonella enterica Serovar typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation, J. Bacteriol., 2001, vol. 183, pp. 5848–5854.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Hoogmoed, C.G., van der Kuij-Booij M., van der Mei H.C., Busscher H.J. Inhibition of Strteptococcus mutans NS Adhesion with and without a Salivary Conditioning Film by Biosurfactant-Releasing Streptococcus mitis Strains, Appl. Environ. Microbiol., 2000, vol. 66, pp. 659–663.PubMedCrossRefGoogle Scholar
  71. 71.
    Millsap, K., Reid, G., van der Mei, H.C., and Busscher, H.J., Displacement of Enterococcus faecalis from Hydrophobic and Hydrophilic Substrata by Lactobacillus and Streptococcus spp. As Studied in a Parallel Plate Flow Chamber, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1867–1874.PubMedGoogle Scholar
  72. 72.
    Velraeds, M.M., van der Mei, H.C., Reid, G., and Busscher, H.J., Inhibition of Initial Adhesion of Uropathogenic Enterococcus faecalis by Biosurfactants from Lactobacillus Isolates, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1958–1963.PubMedGoogle Scholar
  73. 73.
    Maximilien, R., de Nys, R., Holmstrom, C., Gram, L., Crass, K., Kjelleberg, S., and Steinberg, P.D., Chemical Mediation of Bacterial Surface Colonisation by Secondary Metabolites from the Red Alga Delisa pulchra, Aquat. Microb. Ecol, 1998, vol. 15, pp. 233–246.Google Scholar
  74. 74.
    Davey, M.E., Caiazza, N.C., and O’Toole, G.A., Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAOI, J. Bacteriol., 2003, vol. 185, pp. 1027–1036.PubMedCrossRefGoogle Scholar
  75. 75.
    Sutherland, I.W., Hughes, K.A., Skillman, L.C., and Tait K. The Interaction of Phage and Biofilms, FEMS Microbiol. Letts., 2004, vol. 2, pp. 1–6.CrossRefGoogle Scholar
  76. 76.
    De Beer, D, Use of Microelectrodes to Measure in situ Microbial Activities in Biofilms, Sediments and Microbial Mats, Molecular Microbial Ecology, Akkermans, A.D.L. et al., Eds., Kluwer, 1999, pp. 67–81.Google Scholar
  77. 77.
    Starman, P.J., Jones, W.L., and Characklis, W.G., Interspecies Competition in Colonized Porous Pellets, Water Res., 1994, vol. 28, pp. 831–839.CrossRefGoogle Scholar
  78. 78.
    Banks, M.K. and Bryers, J.D., Bacterial Species Dominance within a Binary Culture Biofilm, Appl. Environ. Microbiol., 1991, vol. 16, pp. 543–550.Google Scholar
  79. 79.
    Odenyo, A.A., Makie, R.I., Stahl, D.A., and White, B.A., The Use of 16S rRNA-Targeted Oligonucleotide Probes to Study Competition between Ruminal Fibrolytic Bacteria: Development of Probes for Ruminococcus Species and Evidence for Bacteriocin Production, Appl. Environ. Microbiol., vol. 60, pp. 3688–3696.Google Scholar
  80. 80.
    Lee, W., Lewandowski, Z., Morrison, M., Characklis, W.G., Avei, R., and Niclsen, P.H., Corrosion of Mild Steel Underne ath Aerobic Biofilms Containing Sulfate Reducing Bacteria, Biofouling, 1993, vol. 7, pp. 197–239.CrossRefGoogle Scholar
  81. 81.
    Wolin, M.J. and Miller, T.L., Microbe-Microbe Interactions, The rumenmicrobial ecosystem, Hobson, P.N., Ed., New York: Elsevier Science Publ, 1988, pp. 121–132.Google Scholar
  82. 82.
    Weimer, P.J., Cellulose Degradation by Ruminal Microorganisms, Crit. Rev. Biotechnol., vol. 12, pp. 189–223.Google Scholar
  83. 83.
    Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W., Biofilms As Complex Differentiated Communities, Annu. Rev. Microbiol., 2002, vol. 56, pp. 187–209.PubMedCrossRefGoogle Scholar
  84. 84.
    Van Elsas, J.D. and Bailey, M.J., The Ecology of Transfer of Mobile Genetic Elements, FEMS Microbiol. Ecol., 2002, vol. 42, pp. 183–197.Google Scholar
  85. 85.
    Hayes, F., Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death and Cell Cycle Arrest, Science, 2003, vol. 301, pp. 1496–1499.PubMedCrossRefGoogle Scholar
  86. 86.
    Haagensen, J.A.J., Hansen, S.K., Jchansen, T., and Molin, S., In Situ Detection of Horizontal Transfer of Mobile Genetic Elements, FEMS Microbiol. Ecol., 2002, vol. 42, pp. 261–268.CrossRefPubMedGoogle Scholar
  87. 87.
    Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., and Molin, S., Role of Commensal Relationships on the Spatial Structure of a Surface-Attached Microbial Consortium, Environ. Microbiol, 2000, vol. 2, pp. 59–68.PubMedCrossRefGoogle Scholar
  88. 88.
    Cochran, W.L., McFeters, G.A., and Stewart, P.S., Reduced Susceptibility of Thin Pseudomonas aeruginosa Biofilms to Hydrogen Peroxide and Monochloramine, J. Appl. Microbiol., 2000, vol. 88, pp. 22–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Oosthuizen, M.C., Steyn, B., Theron, J., Cossete, P., Lindsay, D., von Holy, A., and Brozel, V.S., Proteomic Analysis Reveals Differential protein Expression by Bacillus cereus During Biofilm Formation, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2770–2780.PubMedCrossRefGoogle Scholar
  90. 90.
    Heydom, A., Ersboll, B., Kato, J., Hentzer, M., Parsek, M.R., Tolker-Nielsen, T., Givskov, M., and Molin, S., Statistical Analysis of Pseudomonas aeruginosa Biofilms Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-To-Cell Signaling, and Stationary-Phase Sigma Factor Expression, Appl. Environ. Microbiol, 2002, vol. 68, pp. 2008–2017.CrossRefGoogle Scholar
  91. 91.
    Klevit, T.R.D., Gillis, R., Marx, S., Brown, C., and Iglewski, B.H., Quorum-Sensing Genes in Pseudomonas aeruginosa Biofilms: Ther Role and Expression Pattern, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1865–1873.CrossRefGoogle Scholar
  92. 92.
    Rick, W.Ye., Tao Wang., Bedzyk, L., and Croker, K.M., Application of DNA Microarrays in Microbial Systems, J. Microb. Methods, 2001, vol. 47, pp. 257–272.CrossRefGoogle Scholar
  93. 93.
    Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W., and Wood, T.K., Gene Expression in Escherichia coli Biofilms, Appl. Microbiol. Biotechnol., 2004, vol. 64, pp. 515–524.PubMedCrossRefGoogle Scholar
  94. 94.
    Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P., Gene Expression in Pseudomonas aeruginosa Biofilm, Nature, 2001, vol. 413, pp. 860–864.PubMedCrossRefGoogle Scholar
  95. 95.
    Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G., and Read, R.R., Biofilm Bacteria: Formation and Comparative Susceptibility To Antibiotics, Can. J. Vet. Res., 2002, vol. 66, pp. 86–92.PubMedGoogle Scholar
  96. 96.
    Lewis, K., Persister Cells and the Riddle of Biofilm Survival, Biokhimiya, 2005, vol. 70, pp. 327–336 [Biochemistry (Moscow) (Engl. Transl.), vol. 70, no. 2, pp. 267–275].Google Scholar
  97. 97.
    Mah, T.F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., and O’Toole, G.A., A Genetic Basis for Pseudomonas aeruginosa Biofilm Antibiotic Resistance, Nature, 2003, vol. 426, pp. 306–310.PubMedCrossRefGoogle Scholar
  98. 98.
    Hoffman, L.R. and D’Argenio, D.A., MacCoss M.J., Zhang Z., Jones R.A., and Miller S.I., Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation, Nature, 2005, vol. 436, pp. 1171–1175.PubMedCrossRefGoogle Scholar
  99. 99.
    De Kievit, T.R., Parkins, M.D., Gillis, R.J., Srikumar, R., Ceri, H., Poole, K., Iglewski, B.H., and Storey, D.G., Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, Antimicrob. Agent. Chem., 2001, vol. 45, pp. 1761–1770.CrossRefGoogle Scholar
  100. 100.
    Ramage, G., Bachmann, S., Patterson, T.F., Wickes, B.L., and Lopes-Ribot, J.L., Investigation of Multidrug Efflux Pumpsin Relation to Fluconazole Resistamce in Candida albicans Biofilms, J. Antibiot. Chemother., 2002, vol. 49, pp. 973–980.CrossRefGoogle Scholar
  101. 101.
    Baillie, G.S. and Douglas, L.J., Effect of Growth Rate on Resistance of Candida albicans Biofilms to Antifungal Agents, Antimicrob. Agents Chemother., 1998, vol. 42, pp. 1900–1905.PubMedGoogle Scholar
  102. 102.
    Roberts, M.E. and Stewart, P.S., Modeling Antibiotic Tolerance in Biofilm by Accounting for Nutrient Limitation, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 48–52.PubMedCrossRefGoogle Scholar
  103. 103.
    Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S., Bacterial Persistence as a Phenotypic Switch, Science, 2004, vol. 305, no. (5690), pp. 1622–1625.PubMedCrossRefGoogle Scholar
  104. 104.
    Bigger, J.W., Treatment of Staphylococcal Infections with Penicillin, Lancet, 1944, vol. 11, pp. 497–500.CrossRefGoogle Scholar
  105. 105.
    Moyed, H.S. and Bertrand, K.P., hipA, a Newly Recognized Gene of Escherichia coli K-12 That Affects Frequency of Persistence after Inhibition of Murein Synthesis, J. Bacteriol., 1983, vol. 155, pp. 768–775.PubMedGoogle Scholar
  106. 106.
    Spoering, A.L. and Lewis, K., Biofilm and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials, J. Bacteriol., 2001, vol. 183, pp. 6746–6751.PubMedCrossRefGoogle Scholar
  107. 107.
    Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K., Persister Cells and Tolerance to Antimicrobials, FEMS Microbiol. Letts., 2004, vol. 230, pp. 13–18.CrossRefGoogle Scholar
  108. 108.
    Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K., Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli, J. Bacteriol., 2004, vol. 186, pp. 8172–8180.PubMedCrossRefGoogle Scholar
  109. 109.
    Levis, K., Pathogen Resistance as the Origin of Kin Altruism, J. Theor. Biol., 1998, vol. 193, pp. 359–363.CrossRefGoogle Scholar
  110. 110.
    Kussel, E., Kishony, R., Balaban, N.Q., and Leibler, S., Bacterial Persistence: a Model of Survival in Changing Environments, Genetics, 2005, vol. 169, pp. 1807–1814.CrossRefGoogle Scholar
  111. 111.
    Cogan, N.G., Effect of Persister Formation on Bacterial Response to Dosing, J. Theor. Biol., 2006, vol. 238, pp. 694–703.PubMedCrossRefGoogle Scholar
  112. 112.
    Wiuff, C., Zappala, R.M., Regoes, R.R., Garner, K.N., Baquero, F., and Levin, B.R., Phenotypic Tolerance: Antibiotic Enrichment of Noninherited Resistance in Bacterial Populations, Antimicrob. Agents. Chemother., 2005, vol. 49, pp. 1483–1494.PubMedCrossRefGoogle Scholar
  113. 113.
    Harrison, J.J., Ceri, H., Roper, N.J., Badry, E.A., Sproule, K.M., and Turner, R.J., Persister Cells Mediate Tolerance to Metal Oxyanions in Escherichia coli, Microbiology (UK), 2005, vol. 151, pp. 3181–3195.CrossRefGoogle Scholar
  114. 114.
    Harrison, J.J., Turner, R.J., and Ceri, H., Persister Cells, the Biofilm Matrix and Tolerance to Metal Cations in Biofilm and Planktonic Pseudomonas aeruginosa, Environ. Microbiol., 2005, vol. 7, pp. 981–994.PubMedCrossRefGoogle Scholar
  115. 115.
    Lappin-Scott, H.M., Bass, C.J., McAlpine, K.M., and Sanders, P.F., Survival Mechanismds of Hydrogen Sulfide-Producing Bacteria Isolated from Extreme Environments and Their Role in Corrosion, Int. Biodeterior. Biodeg., 1994, vol. 34, pp. 305–319.CrossRefGoogle Scholar
  116. 116.
    Costerton, J.W and Stoodley, P, Microbial Biofilms: Protective Niches in Ancient and Modern Geomicrobiology, Fossil and Recent Biofilms: a Natural History of Life on Earth, Krumbein, W.E., Paterson, D.M., and Zavarzin, G.A., Eds., Dordrecht: Kluwer, 2003, preface.Google Scholar
  117. 117.
    Golovlev, E.L., The Mechanism of Formation of Pseudomonas aeruginosa Biofilm, a Type of Structured Population, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 293–300 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 249–254].Google Scholar
  118. 118.
    Lee, A.K. and Newman, D.K., Microbial Iron Respiration: Impacts on Corrosion Processes, Appl. Microbiol. Biotechnol., 2003, vol. 62, pp. 134–139.PubMedCrossRefGoogle Scholar
  119. 119.
    Zoo, R., Ornek, D., Syrett, B.C., Green, R.M., Hsu, C.H., Mansfeld, F.B., and Wood, T.K., Inhibiting Mild Steel Corrosion from Sulfate-Reducing Bacteria Using Antimicrobial-Producing Biofilms in Three-Mile-Island Process Water, Appl. Microbiol. Biotechnol., 2004, vol. 64, pp. 275–283.CrossRefGoogle Scholar
  120. 120.
    Molina, M.A., Ramos, J.-L., and Espinosa-Urgel, M., Plant-Associated Biofilms, Rev. Environ. Sci. Biotechnol., 2003, vol. 2, pp. 99–108.CrossRefGoogle Scholar
  121. 121.
    Bais, H.P., Fall, R., and Vivanco, J.M., Biocontrol of Bacillus subtilis Against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfacin Production, Plant. Physiol., 2004, vol. 134, pp. 307–319.PubMedCrossRefGoogle Scholar
  122. 122.
    Yan, L., Boyd, K.G., and Burgess, J.G., Surface Attachment Induced Production of Antimicrobial Compounds by Marine Epiphytic Bacteria Using Modified Roller Bottle Cultivation, Marin. Biotechnol., 2002, vol. 4, pp. 356–366.CrossRefGoogle Scholar
  123. 123.
    Yan, L., Boyd, K.G., Adams, D.R., and Burgess, J.G., Biofilm-Specific Cross-Species Induction of Antimicrobial Compound in Bacilli, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3719–3727.PubMedCrossRefGoogle Scholar
  124. 124.
    Matz, C. and Kjelleberg, S., Off the Hook-How Bacteria Survive Protozoan Grazing, Trends Microbiol., 2005, vol. 13, pp. 302–307.PubMedCrossRefGoogle Scholar
  125. 125.
    Thompson, I.P., van der Gast, C.J., Ciric, L., and Singer, A.C., Bioaugmentation for Bioremediation: the Challenge of Strain Selection, Environ. Microbiol., 2005, vol. 7, pp. 909–915.PubMedCrossRefGoogle Scholar
  126. 126.
    Sanders, P.F and Sturman, P.J, Biofouling in Oil Industry, Petroleum Microbiology, Ollivier, B. and Magot, M., Eds., Washington, DC: ASM Press, 2005, pp. 171–198.Google Scholar
  127. 127.
    Shapiro, J.A., Thinking About Bacterial Populations as Multicellular Organisms, Annu. Rev. Microbiol., 1998, vol. 52, pp. 81–104.PubMedCrossRefGoogle Scholar
  128. 128.
    Kreft, J.U, Biofilms Promote Altruism, Biofilm 2003. ASM conferences 2003, Washington: ASM Press. p. 25A.Google Scholar
  129. 129.
    Caldwell, D.E., Post-Modem Ecology—Is the Environment the Organism?, Environ. Microbiol., 1999, vol. 1, pp. 279–281.PubMedCrossRefGoogle Scholar
  130. 130.
    Rice, K.C. and Bayles, K.W., Death’s Toolbox: Examining the Molecular Components of Bacterial Programmed Cell Death, Mol. Microbiol., 2003, vol. 50, pp. 729–738.PubMedCrossRefGoogle Scholar
  131. 131.
    Gordeeva, A.V., Labas, Yu.A., and Zvyagil’skaya, R.A., Apoptosis in Unicellular Organisms: Mechanisms and Evolution, Biokhimiya, 2004, vol. 69, pp. 1301–1313 [Biochemistry (Moscow) (Engl. Transl., vol. 69, no. 10, pp. 1055–1066).Google Scholar
  132. 132.
    Bayles, K.W., Are the Molecular Strategies That Control Apoptosis Conserved in Bacteria?, Trends Microbiol., 2003, vol. 11, pp. 306–311.PubMedCrossRefGoogle Scholar
  133. 133.
    Wimpenny, J., Manz, W., and Szewzyk, U., Heterogeneity in Biofilms, FEMS Microbiol. Lett., 2000, vol. 24, pp. 661–671.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations