Microbiology

, Volume 75, Issue 6, pp 683–688

Effect of hydrogen concentration on the community structure of hydrogenotrophic methanogens studied by T-RELP analysis of 16S rRNA gene amplicons

Experimental Articles

Abstract

Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to monitor the changes in the composition of the population of methanogens in enrichment cultures under high and low hydrogen concentrations. Hydrogen concentration was shown to determine the structure of a methanogenic community. High hydrogen concentration probably favors the hydrogen-and acetate-utilizing representatives of Methanosarcinaceae, while a more diverse methanogenic community is favored by low hydrogen concentrations.

Key words

T-RFLP analysis hydrogenotrophic methanogens syntrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitman, W.B., Bowen, T.L., and Boone, D.R., The Methanogenic Bacteria, The Prokaryotes. 2nd Ed., A. Balows et al. Eds., New York: Springer, 1992, pp. 719–767.Google Scholar
  2. 2.
    Neue, H.U., Methane Emission from Rice Fields, Bio-Science, 1993, vol. 43, pp. 466–473.Google Scholar
  3. 3.
    Chin, K.J. and Conrad, R., Intermediary Metabolism in Methanogenic Paddy Soil and the Influence of Temperature, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 85–102.CrossRefGoogle Scholar
  4. 4.
    Chin, K.J., Rainey, F.A., Janssen, P.H., and Conrad, R., Methanogenic Degradation of Polysaccharides and the Characterization of Polysaccharolytic Clostridia from Anoxic Rice Field Soil, Syst. Appl. Microbiol, 1998, vol. 21, pp. 185–200.Google Scholar
  5. 5.
    Conrad, R., Contribution of Hydrogen to Methane Production and Control of Hydrogen Concentrations in Methanogenic Soil and Sediments. Minireview, FEMS Microbiol. Ecol., 1999, vol. 28, pp. 569–578.Google Scholar
  6. 6.
    Schink, B., Energetics of Syntrophic Cooperation in Methanogenic Degradation, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 262–280.PubMedGoogle Scholar
  7. 7.
    Lueders, T., Chin, K.J., Conrad, R., and Friedrich, M., Molecular Analyses of Methyl-Coenzyme M Reductase Alphasubunit (mcrA) Genes in Rice Field Soil and Enrichment Cultures Reveal the Methanogenic Phenotype of a Novel Archaeal Lineage, Environ. Microbiol, 2001, vol. 3, pp. 194–204.PubMedCrossRefGoogle Scholar
  8. 8.
    Erkel, C., Kemnitz, D., Kube, M., Ricke, P., Chin, K.J., Dedysh, S., Reinhardt, R., Conrad, R., and Liesack, W., Retrieval of First Genome Data for Rice Cluster I Methanogens by a Combined Approach of Cultivation and Molecular Techniques, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 187–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Egert, M., Wagner, B., Lemke, T., Brune, A., and Friedrich, M.W., Microbial Community Structure in Midgut and Hindgut of the Humus-Feeding Larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae), Appl. Environ. Microbiol., 2003, vol. 69, pp. 6659–6668.PubMedCrossRefGoogle Scholar
  10. 10.
    Glissman, K., Chin, K.J., Casper, P., and Conrad, R., Methanogenic Pathway and Archaeal Community Structure in the Sediment of Eutrophic Lake Dagow: Effect of Temperature, Microbiol. Ecol., 2004, vol. 48, pp. 389–399.CrossRefGoogle Scholar
  11. 11.
    Krüger, M., Frenzel, P., Kemnitz, D., and Conrad, R., Activity, Structure and Dynamics of the Methanogenic Archaeal Community in a Flooded Italian Rice Field, FEMS Microbiol. Ecol., 2005, vol. 51, no. 3, pp. 323–331.PubMedCrossRefGoogle Scholar
  12. 12.
    Krumböck, M. and Conrad, R., Metabolism of Position-labelled Glucose in Anoxic Methanogenic Paddy Soil and Lake Sediment, FEMS Microbiol. Ecol., 1991, vol. 85, pp. 247–256.CrossRefGoogle Scholar
  13. 13.
    Chin, K.J., Lukow, T., and Conrad, R., Effect of Temperature on Structure and Function of the Methanogenic Archaeal Community in An Anoxic Rice Field Soil, Appl. Environ. Microbiol., 1999, vol. 65, pp. 2341–2349.PubMedGoogle Scholar
  14. 14.
    Lueders, T. and Friedrich, M., Archaeal Population Dynamics During Sequential Reduction Processes in Rice Fiels Soil, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2732–2742.PubMedCrossRefGoogle Scholar
  15. 15.
    Dunbar, J., Ticknor, L.O., and Kuske, C.R., Phylogenetic Specificity and Reproducibility and New Method for Analysis of Terminal Restriction Fragment Profiles of 16S rRNA Genes from Bacrerial Communities, Appl. Environ. Microbiol., 2000, vol. 69, pp. 190–197.Google Scholar
  16. 16.
    Liu, W.N., Marsh, T.L., Cheng, H., and Forney, L.J., Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S RRNA, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4516–4522.PubMedGoogle Scholar
  17. 17.
    Conrad, R., Mayer, H.P., and Wüst, M., Temporal Change of Gas Metabolism by Hydrogen-Syntrophic Methanogenic Bacterial Associations in Anoxic Paddy Soil, FEMS Microbiol. Ecol., 1989, vol. 62, pp. 265–274.CrossRefGoogle Scholar
  18. 18.
    Grosskopf, R., Janssen, P.H., and Liesack, W., Diversity and Structure of the Methanogenic Community in Anoxic Rice Paddy Soil Microcosm as Examined by Cultivation and Direct 16S rRNA Gene Sequence Retrieval, Appl. Environ. Microbiol., 1998, vol. 64, pp. 960–969.PubMedGoogle Scholar
  19. 19.
    Kemnitz, D., Chin, K.J., Bodelier, P., and Conrad, R., Community Analysis of Methanogenic Archaea within a Riparian Flooding Gradient, Environ. Microbiol., 2004, vol. 6, pp. 449–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Thebrath, B., Mayer, H.P., and Conrad, R., Bicarbonate-Dependent Production and Methanogenic Consumption of Acetate in Anoxic Paddy Soil, FEMS Microbiol. Ecil, 1992, vol. 86, pp. 295–302.CrossRefGoogle Scholar
  21. 21.
    Jetten, M.S.M., Stams, A.J.M., and Zehnder, A.J.B., Methanogenesis from Acetate — a Comparison of the Acetate Metabolism in Methanothrix soehngenii and Methanosarcina spp., FEMS Microbiol. Rev., 1992, vol. 88, pp. 181–197.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  1. 1.Department of MicrobiologyMoscow State UniversityMoscowRussia
  2. 2.Department of BiogeochemistryMax Planck Institute of Terrestrial MicrobiologyMarburgGermany

Personalised recommendations