, Volume 75, Issue 4, pp 427–431 | Cite as

Oxidative stress and differentiation in Neurospora crassa

  • T. A. Belozerskaya
  • N. N. Gessler
Conference Proceedings


Environmental stress factors induce oxidative stress in fungi by increasing the intracellular concentrations of reactive oxygen species (ROS). In the mycelium, ROS act as signal molecules needed for cytodifferentiation at certain stages of the development of fungi. Generation of ROS in cells induces the activation of antioxidant protective mechanisms. The purpose of this communication is to analyze the role of ROS in light signal transduction, mediated in Neurospora crassa cells by the White Collar Complex.

Key words

oxidative stress cell differentiation Neurospora crassa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dröge, W., Free Radicals and Physiological Control of Cell Function, Physiol. Rev., 2002, vol. 82, pp. 47–95.PubMedGoogle Scholar
  2. 2.
    Hansberg, W. and Aguirre, J., Hyperoxidant States Cause Microbial Cell Differentiation by Cell Isolation from Dioxygen, J. Theor. Biol., 1990, vol. 142, no. 2, pp. 287–293.CrossRefGoogle Scholar
  3. 3.
    Borkovich, K.A., Alex, L.A., Yarden, O., et al., Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism, Microbiol. Mol. Biol. Rev., 2004, vol. 68, no. 1, pp. 1–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Belozerskaya, T.A. and Potapova, T.V., Intrahyphal Communication in Segmented Mycelium, Exp. Mycol., 1993, vol. 17, no. 2, pp. 157–169.CrossRefGoogle Scholar
  5. 5.
    Sokolovskii, V.Yu. and Belozerskaya, T.A., Effect of Stressors on Differential Expression of Genes during Neurospora crassa Development, Usp. Biol. Khim., 2000, vol. 40, pp. 85–152.Google Scholar
  6. 6.
    Aguirre, J., Rius-Momberg, M., Hewitt, D., and Hansberg, W., Reactive Oxygen Species and Development in Microbial Eukaryotes, Trends Microbiol., 2005, vol. 13, no. 3, pp. 111–118.PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor, B.L. and Zhulin, I.B., PAS Domains: Internal Sensors of Oxygen, Redox Potential and Light, Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 3, pp. 479–506.PubMedGoogle Scholar
  8. 8.
    Linden, H., White Collar 1 Senses Blue Light, Science, 2002, vol. 297, no. 8, pp. 777–778.PubMedCrossRefGoogle Scholar
  9. 9.
    Bloomfield, G. and Pears, C., Superoxide Signaling Required for Multicellular Development of Dictyostellium, J. Cell Sci., 2003, vol. 116, no. 16, pp. 3387–3397.PubMedCrossRefGoogle Scholar
  10. 10.
    Sidery, M. and Georgiou, Ch.D., Differentiation and Hydrogen Peroxide Production in Sclerotium rolfsii Are Induced by the Oxidizing Growth Factors, Light and Iron, Mycologia, 2000, vol. 92, no. 6, pp. 1033–1042.Google Scholar
  11. 11.
    Song, N.-K., Jeong, Ch.-S., and Choi, H.-S., Identification of Nitric Oxide Synthase in Flammulina velutipes, Mycologia, 2000, vol. 92, no. 6, pp. 1027–1032.Google Scholar
  12. 12.
    Feofilova, E.P., Tereshina, V.M., Memorskaya, A.S., Zav’yalova, L.A., and Maryshova, N.S., Changes in the Cytosol Carbohydrate Composition during the Cytodifferentiation Process in Fungi of the Order Agaricalis, Mikrobiologiya, 1999, vol. 68, no. 3, pp. 356–361 [Microbiology (Engl. Transl.), vol. 68, no. 3, pp. 304–309].Google Scholar
  13. 13.
    Gessler, N.N., Leonovich, O.A., Rabinovich, Ya.M., Rudchenko, M.N., and Belozerskaya, T.A., A Comparative Study of the Components of the Antioxidant Defense System during Growth of the Mycelium of a Wild-Type Neurospora crassa Strain and Mutants, white collar-1 and white collar-2, Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 3, pp. 354–358 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 42, no. 3, pp. 293–297].Google Scholar
  14. 14.
    Munkers, K.D., Selection and Analysis of Superoxide Dismutase Mutants of Neurospora crassa, Free Rad. Biol. Chem., 1992, vol. 13, no. 2, pp. 305–318.CrossRefGoogle Scholar
  15. 15.
    Yoshida, Y. and Hasunuma, K., Reactive Oxygen Species Affect Photomorphogenesis in Neurospora crassa, J. Biol. Chem., 2004, vol. 279, no. 8, pp. 6986–6993.PubMedCrossRefGoogle Scholar
  16. 16.
    Michan, Sh., Lledias, F., and Hansberg, W., Regulation and Oxidation of Two Large Monofunctional Catalases, Free Rad. Biol. Chem., 2002, vol. 33, no. 4, pp. 521–532.CrossRefGoogle Scholar
  17. 17.
    Winyard, P.J., Mooday, Ch.J., and Jacob, C., Oxidative Activation of Antioxidant Defence, Trends Biochem. Sci., 2005, vol. 30, no. 8, pp. 452–461.CrossRefGoogle Scholar
  18. 18.
    Iigusha, H., Yoshida, Y., and Hasunuma, K., Oxygen and Hydrogen Peroxide Enhance Light-Induced Carotenoid Synthesis in Neurospora crassa, FEBS Lett., 2005, vol. 579, no. 18, pp. 4012–4016.CrossRefGoogle Scholar
  19. 19.
    Michan, Sh., Lledias, F., and Hansberg, W., Asexual Development Is Increased in Neurospora crassa cat-3 Null Mutant Strains, Eukaryotic Cell, 2003, vol. 2, no. 4, pp. 798–808.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • T. A. Belozerskaya
    • 1
  • N. N. Gessler
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations