Microbiology

, Volume 75, Issue 2, pp 186–191 | Cite as

Comparative morphological, ecological, and molecular studies of Aspergillus versicolor (Vuill.) tiraboschi strains isolated from different ecotopes

  • G. M. Fomicheva
  • O. V. Vasilenko
  • O. E. Marfenina
Experimental Articles

Abstract

Cultural, morphological, ecological, and trophic properties (growth at different temperatures and on various organic substrates), as well as molecular and genetic peculiarities of Aspergillus versicolor (Vuill.) Tiraboschi strains of different origins, were determined. The strains were isolated from different ecotopes (upper horizons of modern soils of several geographic regions, ancient soils and peat, and permafrost). No essential distinctions in cultural and morphological properties were revealed between the strains. Strains obtained from peat of the Aleutian Islands were characterized by the highest radial rates of colony growth. Some variations in the ITS loci of rDNA were observed in strains isolated from different ecotopes; the distinctions were most pronounced (1.7%) in the strain isolated from 100 000-year-old permafrost.

Key words

microscopic fungi Aspergillus versicolor populations growth rates sequencing rDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Domsch, K.H., Gams, W., and Anderson, T.-H., Compendium of Soil Fungi, vol. I, IHW-Verlag reprint, 1993.Google Scholar
  2. 2.
    Fischer, G. and Dott, W., Relevance of Airborne Fungi and Their Secondary Metabolites for Environmental, Occupational and Indoor Hygiene, Arch. Microbiol., 2003, vol. 179, pp. 75–82.PubMedGoogle Scholar
  3. 3.
    Marfenina, O.E., Kul’ko, A.B., Ivanova, A.E., and Sogonov, M.V., Microscopic Fungi in the Urban Outdoor Environments, Mikol. Fitopatol., 2002, vol. 36, no. 4, pp. 22–32.Google Scholar
  4. 4.
    de Hoog, G.S., Guarro, J., Gene, J., and Figueras, M.J., Atlas of Clinical Fungi, 2nd ed., Boarn: Centraalbureau voor Schimmelcutures, 2000.Google Scholar
  5. 5.
    Konoplenko, L.A. and Sizova, T.P., The Significance of the Temperature for Some Soil Fungi, Vestn. Mosk. Univ., Ser. 16: Biol., 1978, no. 3, pp. 31–34.Google Scholar
  6. 6.
    Yurkov, A.M. and Chernov, I.Yu., Geographical Races of Certain Species of Ascomycetous Yeasts in the Moscow and Novosibirsk Regions, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 687–692 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 597–601].Google Scholar
  7. 7.
    Kochkina, G.A., Ivanushkina, N.E., Karasev, S.G., Gavrish, E.Yu., Gurina, L.V., Evtushenko, L.I., Spirina, E.V., Vorob’eva, E.A., Gilichinskii, D.A., and Ozerskaya, S.M., Survival of Micromycetes and Actinobacteria under Conditions of Long-Term Natural Cryopreservation, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 412–421 [Microbiology (Engl. Transl.), vol. 70, no. 3, pp. 356–364].Google Scholar
  8. 8.
    Gams, W., Hoekstra, E.S., and Aptroot, A., CBS Course of Mycology, 4th ed., Boarn: Centraalbureau voor Schimmelcutures, 1998.Google Scholar
  9. 9.
    Raper, K.B. and Fennell, D.I., The Genus Aspergillus, Baltimore: Williams & Wilkins, 1965.Google Scholar
  10. 10.
    Klich, M.A. and Pitt, J.I., A Laboratory Guide to a Common Aspergillus Species and Their Teleomorphs, Commonwealth Scientific and Research Organisation, Division of Food Processing, 1992, p. 116.Google Scholar
  11. 11.
    Vorob’eva, E.A., Soina, V.S., Zvyagintsev, D.G., and Gilichinskii, D.A., Viable Ecosystems of the Cryolithosphere, Bakterial’naya paleontologiya (Bacterial Paleontology), Yurzanov, A.Yu., Ed., Moscow: Paleontol. Inst. RAN, 2002.Google Scholar
  12. 12.
    Gardes, M. and Bruns, T.D., ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts, Mol. Ecol., 1993, vol. 2, pp. 113–118.PubMedGoogle Scholar
  13. 13.
    Donnell, K., Fusarium and Its Near Relatives, The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, Reynolds, D.R. and Taylor, J.W., Eds., Wallingford: CAB International, 1993, pp. 225–233.Google Scholar
  14. 14.
    White, T.J., Bruns, T., Lee, S., and Taylor, J.W., Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics, PCR Protocols: A Guide to Methods and Applications, Innis, M.A. et al., Eds., New York: Academic, 1990, pp. 315–322.Google Scholar
  15. 15.
    Henry, T., Iwen, P.C., and Hinrichs, S.H., Identification of Aspergillus Species Using Internal Transcribed Spacer Regions 1 and 2, J. Clin. Microbiol., 2000, vol. 38, no. 4, pp. 1510–1515.PubMedGoogle Scholar
  16. 16.
    Kurtzman, C.P. and Robnett, C.J., Identification of Clinically Important Ascomycetous Yeasts Based on Nucleotide Divergence in the 5′ End of the Large-Subunit (26S) Ribosomal DNA Gene, J. Clin. Microbiol., 1997, vol. 35, no. 5, pp. 1216–1223.PubMedGoogle Scholar
  17. 17.
    Peterson, S.W., Phylogenetic Relationships in Aspergillus Based on rDNA Sequence Analysis, Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification, Samson, R.A. and Pitt, J.I., Eds., Harwood Academic, 2000, pp. 323–356.Google Scholar
  18. 18.
    Scorzetti, G., Fell, J.W., Fonseca, A., and Statzell-Tallman, A., Systematics of Basidiomycetous Yeasts: A Comparison of Large Subunit D1/D2 and Internal Transcribed Spacer rDNA Regions, FEMS Yeast Res., 2002, vol. 2, no. 4, pp. 495–517.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. M. Fomicheva
    • 2
  • O. V. Vasilenko
    • 2
  • O. E. Marfenina
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Hematological Scientific CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations