Lithology and Mineral Resources

, Volume 54, Issue 6, pp 524–543 | Cite as

Mesozoic and Early Cenozoic Paleoecological Events in the Sedimentary Record of the NE Peri-Tethys and Adjacent Areas: An Overview

  • Yu. O. GavrilovEmail author
  • E. A. Shcherbinina
  • G. N. Aleksandrova


Manifestations of short-term global and subglobal events have been recognized in the Mesozoic and Cenozoic sedimentary record of the North Caucasus: Paleocene/Eocene boundary PETM, late Cenomanian (OAE2), late Albian (OAE1c and OAE1d), terminal Aptian–early Albian (OAE1b), early Aptian (OAE1a), late Hauterivian (Faraoni), late Valanginian (Weissert), early Toarcian, late Pliensbachian, and others. The similarities and differences of their sedimentological, geochemical, and paleoecological characteristics were revealed during complex studies. Some events are characterized by both negative and positive carbon and oxygen isotopic anomalies. It was shown that most part of the paleoecological events occurred during the sharp sea-level fluctuations and was frequently accompanied by the accumulation of sediments variably enriched in organic matter (OM). The events were characterized by different-scale turnovers in the microbiota composition. Changes in microfossil assemblages allowed us to estimate the degree of perturbation of the trophic level of basins in response to the terrestrial influx of nutrients during marine transgression.



This work was carried out under the State Task of the Geological Institute of the Russian Academy of Sciences (project nos. 0135-2019-0070 and 0135-2019-0062) and financially supported by the Presidium of the Russian Academy of Sciences (program no. 8).


  1. 1.
    Aleksandrova, G. N. and Shcherbinina, E. A., Stratigraphy and paleoenvironmental interpretation of the Paleocene–Eocene transition in the Eastern Crimea, Stratigr. Geol. Correl., 2011, vol. 19, no. 4, pp. 424–449.CrossRefGoogle Scholar
  2. 2.
    Alekseev A.S., Kopaevich L.F., Vengertsev V.V., and Kuz’micheva, T.A. Lithology and micropaleontology of the Cenomanian/Turonian boundary rocks in southwestern Crimea, in Ocherki geologii Kryma (Essays on Geology of the Crimea), Moscow: MGU, 1997, no. 1, pp. 54–73.Google Scholar
  3. 3.
    Akhmet’ev, M.A. and Zaporozhets, N.I., Change of dinocysts in Paleogene and Miocene sections in the Russian Platform, Crimean–Caucasian region, and Turan Palte as reflection of the ecosystem rearrangements, in Iskopaemye organizmy kak osnova stratigraphii, korrelyatsii i paleobiografii fanerozoya (Fossil Organisms as a Basis of the Phanerozoic Stratigraphy, Correlation, and Paleobiography), Kuznetsov, K.I. and Muzylev, N.G., Eds., Moscow: GEOS, 1996, pp. 55–69.Google Scholar
  4. 4.
    Arthur, M.A. and Schlanger, S.O., Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, Am. Ass. Petrol. Geol. Bull., 1979, vol. 63, pp. 870–885.Google Scholar
  5. 5.
    Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., The Cenomanian-Turonian oceanic anoxic event, II, Paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, Brooks, J. and Fleet, A., Eds, Geol. Soc. London Spec. Publ., 1987, no. 26, pp. 401–420.Google Scholar
  6. 6.
    Aze, T., Pearson, P.N., Dickson, A.J., et al., Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum, Geology, 2014, vol. 42, no. 9, pp. 739–742.CrossRefGoogle Scholar
  7. 7.
    Bains, S., Norris, R.D., Corfield, R.M., and Faul, K.L., Termination of global warmth at the Paleocene/Eocene boundary through productivity feedback, Nature. 2000, vol. 407, pp. 171–174.CrossRefGoogle Scholar
  8. 8.
    Baudin, F., Bullot, L.G., Cecca, F., et al., Un equivalent du “Niveau Faraoni” dans le basin du Sud-Est de la France, indice possible d’un evenement anoxique fini-hauterivien etendu a la Tethys mediterraneenne, Bull. Soc. Geol. France, 1999, vol. 170, no. 4, pp. 487–498.Google Scholar
  9. 9.
    Bodin, S., Godet, A., Follmi, K.B., et al., The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: Evidence from phosphorus burial rates, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 188, no. 1–3, pp. 245–264.CrossRefGoogle Scholar
  10. 10.
    Bragina, L.G., Cenomanian and Turonian radiolarians in the Crimean Mountains, Bull. Mosk. O-va Ispyt. Prir.,Ser. Geol. 1999, vol. 74, no. 3, pp. 43–50.Google Scholar
  11. 11.
    Bralower, T.J., Thomas, E., Zachos, J.C., et al., High-resolution record of the late Paleocene thermal maximum and circum-Carribean volcanism: Is there a causal link?, Geology, 1997, vol. 25, no. 11, pp. 963–966.CrossRefGoogle Scholar
  12. 12.
    Carmichael, M.J., Inglis, G.N., Badgera, M.P.S., et al., Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum, Glob. Planet. Change, 2017, vol. 157, pp. 114–138.CrossRefGoogle Scholar
  13. 13.
    Cecca, F., Marini, A., Pallini, G., et al., A guide-level of the uppermost Hauterivian (Lower Cretaceous) in the pelagic succession of Umbria – Marche Apennines (Central Italy): the Faraoni Level, Riv. Ital. Paleontol. Stratigr., 1994, vol. 99, pp. 551–568.Google Scholar
  14. 14.
    Demaison, G.J. and Moore, G.T., Anoxic environments and oil source bed genesis, Am. Ass. Petrol. Geol. Bull., 1980, vol. 64/8, pp. 1179–1209.Google Scholar
  15. 15.
    Demaison, G.J. and Moore, G.T., Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?: discussion, Am. Ass. Petrol. Geol. Bull., 1991, vol. 75/3, pp. 499–500.Google Scholar
  16. 16.
    Dickens, G.R., Methane oxidation during the Late Paleocene thermal maximum, Bull. Soc. Geol. France, 2000, vol. 171, no. l, pp. 37–49.Google Scholar
  17. 17.
    Dickens, G.R., Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events, Clim. Past, 2011, vol. 7, pp. 831–846.CrossRefGoogle Scholar
  18. 18.
    Dickens, G.R., O’Neil, J.R., Rea, D.K., and Owen R.M., Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 1995, vol. 10, pp. 965–971.CrossRefGoogle Scholar
  19. 19.
    D’Onofrio, R., Luciani, V., Fornaciari, E., Giusberti, L Boscolo Galazzo, F., Dallanave, E., Westerhold, T., Sprovieri, M., and Telch, S., Environmental perturbations at the early Eocene ETM2, H2,and I1 events as inferred by Tethyan calcareous plankton (Terche section, northeastern Italy), Paleoceanography, 2016, vol. 31, pp. 1225–1247.CrossRefGoogle Scholar
  20. 20.
    Fisher, J.K., Price, G.D., Hart, M.B., and Leng, M.J., Stable isotope analysis of the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event in the Crimea, Cret. Res., 2005, vol. 26, no. 6, pp. 853–863.CrossRefGoogle Scholar
  21. 21.
    Fricke H.C., Clyde W.C., O’Neil J.R., Gingerich P.D. Evidence for rapid climate change in North America during the late Paleocene thermal maximum: Oxygen isotope composition of biogenic phosphate from the Bighorn Basin (Wyoming), Earth Planet. Sci. Lett., 1998, vol. 160, pp. 193–208.CrossRefGoogle Scholar
  22. 22.
    Frieling, J., Svensen, H.H., Planke, S. et al., Thermogenic methane release as a cause for the long duration of the PETM, PNAS, 2016, vol. 113, no. 43, pp. 12 059–12 064.CrossRefGoogle Scholar
  23. 23.
    Gavrilov, Yu.O., Dinamika formirovaniya yurskogo terrigennogo kompleksa Bol’shogo Kavkaza: sedimentologiya, goekhmiya, postdiageneticheskie preobrazovaniya (Formation Dynamics of the Jurassic Terrigenous Complex in the Greater Caucasus: Sedimentology, Geochemistry, and Postdiagenetic Transformations), Moscow: GEOS, 2005.Google Scholar
  24. 24.
    Gavrilov Yu. O. and Kopaevich, L. F., Some of the geochemical, biochemical, and biotic consequences of eustatic oscillations, Strat. Geol. Correl., 1996, no. 4, pp. 315–325.Google Scholar
  25. 25.
    Gavrilov, Yu.O. and Shcherbinina, E.A., The global Paleocene/Eocene biospheric event, in Sovremennye problemy geologii (Modern Problems in Geology), Gavrilov, Yu.O. and Khutorskii, M.D., Eds., Moscow: Nauka, 2004.Google Scholar
  26. 26.
    Gavrilov, Yu. O., Kodina, L. A., Lubchenko, I. Yu., and Muzylev, N. G., The Late Paleocene anoxic event in epicontinental seas of Peri-Tethys and formation of the sapropelite unit: Sedimentology and geochemistry, Lith. Miner. Resour., 1997, no. 5, pp. 427–450.Google Scholar
  27. 27.
    Gavrilov, Yu. O., Shchepetova, E. V., Baraboshkin, E. Yu., and Shcherbinina, E. A., The Early Cretaceous anoxic basin of the Russian Plate: Sedimentology and geochemistry, Lith. Miner. Resour., 2002, no. 4, pp. 310–329.Google Scholar
  28. 28.
    Gavrilov, Yu.O., Shcherbinina, E.A., and Oberhansli, H., Paleocene/Eocene boundary events in the Northeastern Peri-Tethys, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, Wing, S.L., Gingerich, P.D., Schmitz, B. . and Thomas, E., Eds., Geol. Soc. Am. Spec. Pap., no. 369, 2003, pp. 49–64.Google Scholar
  29. 29.
    Gavrilov, Yu.O., Shcherbinina, E.A., Golovanova, O.V., and Pokrovskii, B.G., The Late Cenomanian paleoecological event (OAE 2) in the Eastern Caucasus Basin of northern Peri-Tethys, Lithol. Miner. Resour., 2013, no. 6, pp. 457–488.CrossRefGoogle Scholar
  30. 30.
    Gavrilov, Yu.O., Golovanova, O.V., Shchpetova, E.V., and Pokrovsky, B.G, Lithological and geochemical characteristics of the Paleocene/Eocene sediments corresponding to the PETM biospheric event in the Eastern Crimea (Nasypnoe section), Lith. Miner. Resour., 2018, no. 5, pp. 337–348.CrossRefGoogle Scholar
  31. 31.
    Kuz’micheva, T.A., Distribution of foraminifers in the Cenomanian/Turonian boundary rocks in the Belaya Mountain section (southwestern Crimea, Ukraine), Vest. MGU. Ser. Geol., 2001, no. 4, pp. 27–35.Google Scholar
  32. 32.
    Jenkyns, H.C., The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci., 1988, vol. 288, pp. 101–151.CrossRefGoogle Scholar
  33. 33.
    Jenkyns, H. C., Cretaceous anoxic events: From continent to oceans, J. Geol. Soc. London, 1980, vol. 137, pp. 171–188.CrossRefGoogle Scholar
  34. 34.
    Kaiho, K., Arinobu, T., Ishiwatari, R., et al., Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand, Paleoceanography, 1996, vol. 11, no. 4, pp. 447–pp465.CrossRefGoogle Scholar
  35. 35.
    Karpuk, M.S., Shcherbinina, E.A., Brovina, E.A., Aleksandrova, G.N., et al., Integrated stratigraphy of the Upper Barremian–Aptian sediments from the south-eastern Crimea, Geol. Carpathica, 2018, vol. 69, no. 5, pp. 498–511.CrossRefGoogle Scholar
  36. 36.
    Kelly, D.C., Bralower, T.J., Zachos, J.C., et al., Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum, Geology, 1996, vol. 24, no. 5, pp. 423–426.CrossRefGoogle Scholar
  37. 37.
    Kennett, J.P. and Stott, L.D., Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene, Nature, 1991, vol. 353, pp. 225–229.CrossRefGoogle Scholar
  38. 38.
    Koch, P.L., Clyde, W.C., Hepple, R.P., et al., Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, Wing, S.L., Gingerich, P.D., Schmitz, B. . and Thomas, E., Eds., Geol. Soc. Am. Spec. Pap., no. 369, 2003, pp. 49–64.Google Scholar
  39. 39.
    Kopaevich, L. F., The Turonian strata in Southwestern Crimea and Mangyshlak (foraminiferal biostratigraphy and palaeobiogeography), Mitt. Geol.-Palaontol. Inst. Univ.Hamburg, 1996, vol. 77, pp. 203–211.Google Scholar
  40. 40.
    Kopaevich, L. and Kuzmicheva, T., The Cenomanian-Turonian boundary in southwestern Crimea, Ukraine: Foraminifera and palaeogeographic implications, in Aspects of Cretaceous Stratigraphy and Palaeobiogeography, Wagreich, M., Ed., Proc. 6th Int. Cret. Symp., Osterreich. Akad. Wissensch., 2002, no. 15, pp. 129–149.Google Scholar
  41. 41.
    Kopaevich, L.F. and Walaszczyk, I., An integrated inoceramid-foraminiferal biostratigraphy of the Turonian and Coniacian strata in South-Western Crimea, Soviet Union, Acta Geol, Pol., 1990, vol. 40, no. 1/2, pp. 83–95.Google Scholar
  42. 42.
    Krishnan, S., Pagani, M., Huber, M., and Sluijs, A., High latitude hydrological changes during the Eocene Thermal Maximum 2, Earth Planet. Sci. Lett., 2014, vol. 404, pp. 167–177.CrossRefGoogle Scholar
  43. 43.
    Leckie, R.M., Bralower, T., and Cashman, R., Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, Paleoceanography, 2002, vol. 17, no. 3, pp. 10–29.CrossRefGoogle Scholar
  44. 44.
    Lourens, L.J., Sluijs, A., Kroon, D., et al., Astronomical pacing of the late Paleocene to early Eocene global warming events, Nature, 2005, vol. 435, pp. 1083–1087.CrossRefGoogle Scholar
  45. 45.
    Lu, G., Adatte, T., Keller, G., and Nievez, O., Abrupt climatic, oceanographic and ecologic changes near the Paleocene-Eocene transition in the deep Tethys basin: The Alamedilla section, southern Spain, Eclog. Geol. Helv. 1998, no. 91, pp. 293–306.Google Scholar
  46. 46.
    Muzylev, N.G., Ben’yamovskii, V.N., and Tabachnikova, I.P., Sapropel layers in Lower Paleogene Sediments in the southern Soviet Union, Izv. AN SSSR, Ser. Geol., 1989, no. 11, pp. 117–119.Google Scholar
  47. 47.
    Myzylev, N.G., Ben’yamovskii, V.N., Gavrilov, Yu.O., et al., Paleonotlogical and geochemical characteristics of the Upper Paleocene sapropel in the central Cis-Caucasus, in Iskopaemye organizmy kak osnova stratigraphii, korrelyatsii i paleobiografii fanerozoya (Fossil Organisms as a Basis of the Phanerozoic Stratigraphy, Correlation, and Paleobiography), Kuznetsov, K.I. and Muzylev, N.G., Eds., Moscow: GEOS, 1996, pp. 117–126.Google Scholar
  48. 48.
    Naidin, D.P., Late Cretaceous events in the eastern European paleobeiogeographic region: Communication 2. Cenomanian/Turonian and Maastrichtian/Danian boundary events, Bull. Mosk. O-va Ispyt. Prir.,Ser. Geol., 1993, vol. 68, no. 3, pp. 33–53.Google Scholar
  49. 49.
    Naidin, D.P. and Alekseev, A.S., The Cenomanian rock section in the Kacha and Bodrak interfluve area (Crimea), Izv. Vyssch. Uchebn. Zaved., Geol. Razv., 1980, no. 4, pp. 11–25.Google Scholar
  50. 50.
    Naidin, D.P. and Kiyashko, S.I., Geochemical characteristics of the Cenomanian/Turonian boundary rocks in the Crimean Mountains: Communication 1. Lithology and contents of organic carbon and some elements, Bull. Mosk. O-va Ispyt. Prir.,Ser. Geol., 1994a, vol. 69, no. 1, pp. 28–42.Google Scholar
  51. 51.
    Naidin, D.P. and Kiyashko, S.I., Geochemical characteristics of the Cenomanian/Turonian boundary rocks in the Crimean Mountains: Communication 2. Isotopic composition, oxygen content, and conditions of organic carbon accumulation, Bull. Mosk. O-va Ispyt. Prir.,Ser. Geol., 1994b, vol. 69, no. 2, pp. 59–74.Google Scholar
  52. 52.
    Naidin, D.P., Alekseev, A.S., and Kopaevich, L.F., Fauna in the Turonian sediments in the Kacha and Bodrak interfluve area, in Evolyutsiya organizmov i biostratigrafiya serediny melovogo perioda (Evolution of Organisms and Biostratigrphy of the Mid-Cretaceous), Krasilov, V.A., Ed., Vladivostok: DNTs, 1981, pp. 22–40.Google Scholar
  53. 53.
    Panov, D.I. and Gushchin, A.I., Stratigraphy of Lower–Middle Jurassic rocks on the northern slope of the Eastern Caucasus (Agvali–Khova zone), Bull. Mosk. O-va Ispyt. Prir.,Ser. Geol., 1993, vol. 68, no. 1, pp. 48–64.Google Scholar
  54. 54.
    Pedersen, T.F. and Calvert, S.E., Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?, Am. Ass. Petrol. Geol. Bull., 1990, vol. 74/4, pp. 454–465.Google Scholar
  55. 55.
    Pedersen, T.F. and Calvert S.E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?: discussion, Am. Ass. Petrol. Geol. Bull., 1991, vol. 75/3, pp. 500–501.Google Scholar
  56. 56.
    Rengarten, V.P., Opornye razrezy nizhnemelovykh otlozhenii Dagestana (Reference Sections of the Lower Cretaceous Rocks in Dagestan), Moscow: AN SSSR, 1961.Google Scholar
  57. 57.
    Rodrigues, O.M. and Aubry, M.P., Lower to middle (Danian-Selandian) Paleocene calcareous nannofossil stratigraphy of the Qreiya section (Egypt), in Climate and Biota of the Early Paleogene (Volume of Abstracts), Caballero, F., Eds., Bilbao, 2006, p. 111.Google Scholar
  58. 58.
    Schmitz B., Asaro F., Molina E., et al., High-resolution iridium, δ13C, δ18O, foraminifera, and nannofossil profiles across the Latest Paleocene benthic extinction event in Zumaya, Spain, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1997, vol. 133, pp. 49–68.CrossRefGoogle Scholar
  59. 59.
    Schmitz, B., Molina, E., and Von Salis, K., The Zumaya section in Spain: A possible global stratotype section for the Selandian and Thanetian stages, Newslett. Stratigr., 1998, vol. 36, pp. 35–42.CrossRefGoogle Scholar
  60. 60.
    Schlanger, S.O. and Jenkyns, H.C., Cretaceous oceanic anoxic events: Causes and consequences, Geol. Miner., 1976, vol. 55, pp. 179–184.Google Scholar
  61. 61.
    Schlanger, S.O., Arthur, M.A., Jenkins, H.C., and Scholle, P.A., The Cenomanian-Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and marine δ13C excursion, in Marine Petroleum Source Rocks, Brooks, J. and Fleet, A., Eds., Geol. Soc. London. Spec. Publ., 1987, vol. 26, pp. 371–399.Google Scholar
  62. 62.
    Shcherbinina, E.A. and Aleksandrova, G.N., The Aptian/Albian transition interval in the eastern Caucasus: Evidence from the nannoplankton and dinocyst data, in Mikropalontologiya v Rossii na rubezhe vekov (Micropaleontology in Russia at the Turn of the Century), Gorev, N.V. and Korchagin, O.A., Eds., Moscow: GEOS, 2005a, pp. 154–155.Google Scholar
  63. 63.
    Shcherbinina, E. and Aleksandrova, G., Nannofossil and dinocyst record across the Cenomanian/Turonian transition of the Crimea, Ukraine, 7th Int. Symposium on the Cretaceous, Sci. Progr. Abstracts, Neuchatel, 2005b, pp. 200–201.Google Scholar
  64. 64.
    Soliman, M.E. and Obaidalla, N.A., Danian/Selandian boundary at Gabal Abu Had section, Nile valley (Egypt): lithostratigraphy, mineralogy, geochemistry, and biostratigraphy, in Climate and Biota of the Early Paleogene, Caballero, F., Eds., Bilbao, 2006, p. 125.Google Scholar
  65. 65.
    Speijer, R.P. and Schmitz, B., A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina, Egypt, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1998, vol. 137, no. 1/2, pp. 79–101.CrossRefGoogle Scholar
  66. 66.
    Speijer, R.P., Schmitz, B., and Luger, P., Stratigraphy of the Late Paleocene events in the Middle East: Implications for low- to middle-latitude successions and correlations, J. Geol. Soc. London, 2000, vol. 157, pp. 37–47.CrossRefGoogle Scholar
  67. 67.
    Strakhov, N.M., Significance of hydrosulfuric basins as zones of the bituminous “oil-generating” formations, Izv. AN SSSR. Ser. Geol. 1937, no. 5, pp. 893–917.Google Scholar
  68. 68.
    Strakhov, N.M., Significance of gas regime in basin for the organic matter accumulation therein (Reply to G.I. Teodorovich), Izv. AN SSSR. Ser. Geol. 1941, no. 4/5, pp. 117–135.Google Scholar
  69. 69.
    Strakhov, N.M., Problemy geokhimii sovremennogo okeanskogo litogeneza (Problems of the Geochemistry of Modern Oceanic Lithogenesis), Moscow: Nauka, 1976.Google Scholar
  70. 70.
    Stupin, S. I. and Muzylev, N. G., The Late Paleocene ecologic crisis in epicontinental basins of the Eastern Peritethys: Microbiota and accumulation conditions of sapropelic bed, Stratigr. Geol. Correl., 2001, vol. 9, no. 5, pp. 501–507.Google Scholar
  71. 71.
    Thomas, E. and Shackleton, N.J., The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in Correlation of the Early Paleogene in Northwest Europe, Knox, R.W. O’B., Corfield, R.M., and Dunay, R.E., Eds. Geol. Soc. Spec. Publ., 1996, no. 101, pp. 401–441.Google Scholar
  72. 72.
    Thomas, D.J., Bralower, T.J., and Jones, C.E., Neodymium isotopic reconstructions of the late Paleocene-early Eocene thermohaline circulation, Earth Planet. Sci. Lett., 2003, vol. 209, pp. 309–322.CrossRefGoogle Scholar
  73. 73.
    Thomas, E., Roehl, U., Monechi, S., et al., An Early Eocene hyperthermal event at ~52.5 MA, in Climate and Biota of the Early Paleogene, Caballero, F. , Eds., Bilbao, 2006a, p. 136.Google Scholar
  74. 74.
    Thomas, E., Lourens, L., Sluijs, A., and Stap, L., Benthic foraminifera and stable isotopes during the “Elmo” Early Eocene hyperthermal event (~53.3 MA), in Climate and Biota of the Early Paleogene, Caballero, F., Eds., Bilbao, 2006b, p. 137.Google Scholar
  75. 75.
    Tur, N.A., Planktonic foraminifera recovery from the Cenomanian-Turonian mass extinction event, northeastern Caucasus, in Biotic recovery from mass extinction events, Hart, M.B., Ed., Geol. Soc. London Spec. Publ., 1996, no. 102, pp. 259–264.CrossRefGoogle Scholar
  76. 76.
    Tyson, R.V., Sedimentary organic matter, in Organofacies and Palinofacies, London: Chapman and Hall, 1995.Google Scholar
  77. 77.
    Vernadsky, V.I., Biosfera (Biosphere), Leningrad: Nauchn. Khim.-Tekhn. Izd-vo, 1926.Google Scholar
  78. 78.
    Westerhold, T., Röhl, U., Donner, B., and Zachos, J.C., “Global extent of early Eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209),” Paleoceanogr., Paleoclimatol., 2018, vol. 33, pp. 626–642.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Yu. O. Gavrilov
    • 1
    Email author
  • E. A. Shcherbinina
    • 1
  • G. N. Aleksandrova
    • 1
  1. 1.Geological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations