Advertisement

Lithology and Mineral Resources

, Volume 54, Issue 6, pp 447–464 | Cite as

Mineralogical and Geochemical Features of Pyrite Nodules from Sulfide Turbidites in the Talgan Cu-Zn Massive Sulfide Deposit (Southern Urals)

  • N. R. AyupovaEmail author
  • V. V. Maslennikov
  • D. A. Artem’ev
  • I. A. Blinov
Article
  • 4 Downloads

Abstract

Pyrite nodules were found in thin-layered sulfide ores localized at the flanks of the Talgan Cu-Zn massive sulfide deposit (South Urals) which consists of (1) an inner core (microgranular pyrite with inclusions of gangue minerals and authigenic sulfides), (2) an intermediate zone (anhedral and subhedral pyrite metacrystals), (3) an outer zone (parallel-columnar subhedral pyrite crystals), and (4) the dioctahedral chlorite rim overgrowing on pyrite crystalls of the outer zone. Each zone is characterized by a specific assemblage of trace elements revealed by the LA-ICP-MS micromapping. The content of trace elements in the pyrite significantly (by 1–3 orders of magnitude) decreases in a range of microgranular pyrite of the core → an- and subhedral pyrite crystals of the intermediate zone → subhedral pyrite crystals of the outer zone (average value, ppm): Zn from 13 106 to 9, Pb from 24 100 to 1783, As from 1323 to 134, Co from 1027 to 1.81, Ni from 456 to 4, Ag from 390 to 38, Au from 0.1 to 0.01, Te from 55 to 0.6, and Bi from 9.8 to 0.6. The subhedral pyrite crystals of the outer zone is enriched in Cu (up to 8367 ppm), Sb (up to 1627 ppm), and Mn (734 ppm), relative to microgranular pyrite of the nodule core. Anomalously high contents of trace elements are related to the presence of authigenic inclusions of chalcopyrite, sphalerite, fahlores, and Au–Ag minerals in the pyrite. Gangue components in nodules include quartz, calcite, chlorite, illite, and REE minerals. The ore clasts of distal sulfide turbidites mixed with hyaloclastites, which were altered during dia- and anadiagenesis, were the source of ore material for the nodules.

Keywords:

pyrite nodules trace elements LA-ICP-MS micromapping massive sulfide Urals 

Notes

ACKNOWLEDGMENTS

The authors thank I.V. Vikentyev, DSc (Geol.–Miner.), V.V. Krupskaya, Ph.D. (Geol.–Miner.), and an anonymous peer for constructive remarks and useful recommendations concenrning the presentation of analytical results that made it possible to refine the content and quality of this paper.

FUNDING

This work supported by the Russian Foundation for Basic Research (project no. 17-05-00854) and the State Contract of the Institute of Mineralogy, SU FRC MG UB RAS № АААА-А19-119061790049-3 (2019‒2021).

REFERENCES

  1. 1.
    Amplieva, E.E., Vikent’yev, I.V., Karpukhina, V.S., and Bortnikov, N.S., The role of magmatogene fluid in the formation of the Talgan copper–zinc–pyritic deposit, Southern Urals, Dokl. Earth Sci., 2008, vol. 423A, no. 9, pp. 1427–1430.CrossRefGoogle Scholar
  2. 2.
    Ayupova, N.R. and Maslennikov, V.V., Gal’mirolitity Uzel’ginskogo kolchedanonosnogo polya (Yuzhnyi Ural) (Halmyrolites in the Uzel’ga Massive Sulfide Field, South Urals), Miass: UrO RAN, 2005.Google Scholar
  3. 3.
    Ayupova, N.R., Maslennikov, V.V., and Maslennikova, S.P., Diagenetic sulfide mineralization in oxide–ferruginous rocks in massive sulfide deposits in the Urals, in Metallogeniya drevnikh i sovremennykh okeanov-2014 (Metallogeny of Ancient and Modern Oceans-2014), Miass: IMin UrO RAN, 2014, pp. 103–110.Google Scholar
  4. 4.
    Ayupova, N.R., Maslennikov, V.V., Maslennikova, S.P., et al., Rare mineral and trace element assemblages in submarine supergene zone at the Devonian Molodezhnoye VMS deposit, the Urals, Russia, Mineral Resources in a Sustainable World, Proc. 13th SGA Bienn. Meeting, Nancy, 2015, vol. 5, pp. 2051–2054.Google Scholar
  5. 5.
    Ayupova, N.R., Maslennikov, V.V., Tessalina, S.G., et al., Tube fossils from gossanites of the Urals VHMS deposits, Russia: authigenic mineral assemblages and trace element distributions, Ore Geol. Rev., 2017a, vol. 85, pp. 107–130.CrossRefGoogle Scholar
  6. 6.
    Ayupova, N.R., Maslennikov, V.V., Kotlyarov, V.A., et al., Se and In minerals in the submarine oxidation zone of a massive sulfide orebody of the Molodezhnoe copper–zinc massive sulfide deposit, Southern Urals, Dokl. Earth Sci., 2017b, vol. 473, no. 1, pp. 318–322.CrossRefGoogle Scholar
  7. 7.
    Ayupova, N.R., Maslennikov, V.V., and Filippova, K.A., REE geochemistry amd mineralogy in ores of the Talgan Cu-Zn massive sulfide deposit (Southern Urals), Dokl. Earth Sci., 2019, vol. 487, no. 1, pp. 973–975.CrossRefGoogle Scholar
  8. 8.
    Bajwah, Z.U., Seccombe, Ph., and Offler, R., Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia, Miner. Deposita, 1987, vol. 22, no. 4, pp. 292–300.CrossRefGoogle Scholar
  9. 9.
    Ballantyne, J.M. and Moore, J., Arsenic geochemistry in geothermal systems, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 475–483.CrossRefGoogle Scholar
  10. 10.
    Berner, Z.A., Puchelt, H., Noltner, T., and Kramar, U., Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites, Sedimentology, 2013, vol. 60, pp. 548–573.CrossRefGoogle Scholar
  11. 11.
    Bralia, A., Sabatini, G., and Troja, F., A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems evidences from Southern Tuscany pyritic deposits, Miner. Deposita, 1979, vol. 14, pp. 353–374.CrossRefGoogle Scholar
  12. 12.
    Breit, G.N. and Wanty, R.B., Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis, Chem. Geol., 1991, vol. 91, pp. 83–97.CrossRefGoogle Scholar
  13. 13.
    Butler, I.B. and Nesbitt, R.W., Trace element distributions in the chalcopyrite wall of black smoker chimney: insights from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), Earth Planet. Sci. Lett., 1999, pp. 335–325.CrossRefGoogle Scholar
  14. 14.
    Chudaev, O.V. and Chudaeva, V.A., Geochemical features of the behavior of rare earth elements in carbonate waters of Sikhote-Alin, in Gidrogeokhimiya osadochnykh basseinov (Hydrogeochemistry of Sedimentary Basins), Vladivostok: Dal’nauka, 2008, pp. 168–173.Google Scholar
  15. 15.
    Coleman, M.L., Geochemistry of diagenetic non-silicate minerals kinetic considerations: discussion, Phil. Trans. R. Soc. London, 1985, vol. 315, pp. 39–56.CrossRefGoogle Scholar
  16. 16.
    Danyushevsky, L., Robinson, P., Gilbert, S., et al., Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effect, Geochim. Explor. Environ. Anal., 2011, vol. 11, pp. 51–60.CrossRefGoogle Scholar
  17. 17.
    Daux, V., Crovisier, J.L., Hemond, C., and Petit, J.C., Geochemical evolution of basaltic rocks subjected to weathering: Fate of the major elements, rare earth elements, and thorium, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 22, pp. 4941–4954.CrossRefGoogle Scholar
  18. 18.
    Diagenesis in Sediments, Larsen, G. and Chilingar, V., Ed., Amsterdam: Elsevier, 1967. Translated under the title Diagenez i katagenez osadochnykh obrazovanii, Moscow: Mir, 1971.Google Scholar
  19. 19.
    Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: slyudy i khlority (Clay Minerals: Micas and Chlorites), Moscow: Nauka, 1991.Google Scholar
  20. 20.
    Eberl, D.D., Srodoi, J., and Northrop, H.R., Potassium fixation in smectite by wetting and drying, in Geochemical Processes at Mineral Surfaces, Davis, J.A. and Hayes, K.F., Eds., Am. Chem. Soc. Symp. Ser., 1986, pp. 296–326.Google Scholar
  21. 21.
    Eremin, N.I., Differentsiatsiya vulkanogennogo sul’fidnogo orudeneniya (Differentiation of the Volcaniogenic Sulfide Mineralization), Moscow: MGU, 1983.Google Scholar
  22. 22.
    Froelich, P.N., Klinkhammer, G.P., Bender, M.L., et al., Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 1979, vol. 43, no. 7, pp. 1075–1090.CrossRefGoogle Scholar
  23. 23.
    Furlan, S., Clauer, N., Chaudhuri, S., and Sommer, S., K‑transfer during burial diagenesis in the Mahakam delta basin (Kalimantan, Indonesia), Clays Clay Miner., 1996, vol. 44, no. 1, pp. 157–169.CrossRefGoogle Scholar
  24. 24.
    Genna, D. and Gaboury, D., Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod deposits, Aditibi, Canada, and implication for exploration, Econ. Geol., 2015, vol. 110, pp. 2087–2108.CrossRefGoogle Scholar
  25. 25.
    Genna, D., Gaboury, D., and Roy, G., Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: case study of the Key Tuffite at Bracemac-McLeod deposits, Matagami, Canada, Ore Geol. Rev., 2014, vol. 63, pp. 160–177.CrossRefGoogle Scholar
  26. 26.
    Gregory, D.D., Large, R.R., Halpin, J.A., et al., Trace element content of sedimentary pyrite in black shales, Econ. Geol., 2015, vol. 110, no. 6, pp. 1389–1410.CrossRefGoogle Scholar
  27. 27.
    Gysi, A.P. and Williams-Jone, A.E., The thermodynamic properties of bastnäsite-(Ce) and parisite-(Ce), Chem. Geol., 2015, vol. 392, pp. 87–101.CrossRefGoogle Scholar
  28. 28.
    Harvey, C.C. and Browne, P.R.L., Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand, Clays Clay Miner., 1991, vol. 39, pp. 614–621.CrossRefGoogle Scholar
  29. 29.
    Jahren, J.S. and Aagaard, P., Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution, Clays Clay Miner., 1992, vol. 40, pp. 540–546.CrossRefGoogle Scholar
  30. 30.
    Jochum, K.P., Nohl, U., Herwig, K., et al., GeoReM: A new geochemical database for reference materials and isotopic standards, Geostand. Geoanalytical Res., 2005, vol. 29, pp. 333–338.CrossRefGoogle Scholar
  31. 31.
    Kizil’shtein, L.Ya. and Nastavkin, A.V., Iron sulfides in mudstones within the carbonaceous sequence of Donets Basin, Lithol. Miner. Resour., 2003, no. 1, pp. 31–35.Google Scholar
  32. 32.
    Lanson, B., Sakharov, B.A., Claret, F., and Drits, V.A., Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method, Am. J. Sci., 2009, vol. 309, no. (6), pp. 476–516.CrossRefGoogle Scholar
  33. 33.
    Large, R.R., Maslennikov, V.V., Robert, F., et al., Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Gold Province, Russia, Econ. Geol., 2007, vol. 102, pp. 1233–1267.CrossRefGoogle Scholar
  34. 34.
    Large, R.R., Danyushevsky, L., Hillit, H., et al., Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits, Econ. Geol., 2009, vol. 104, pp. 635–668.CrossRefGoogle Scholar
  35. 35.
    Large, R.R., Bull, S.W., and Maslennikov, V.V., A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits, Econ. Geol., 2011, vol. 106, pp. 331–358.CrossRefGoogle Scholar
  36. 36.
    Large, R.R., Halpin, J.A., Danyushevsky, L.V., et al., Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution, Earth Planet. Sci. Lett., 2014, vol. 389, pp. 209–220.CrossRefGoogle Scholar
  37. 37.
    Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. (Short Course Series), Sylvester, P., Ed., Quebec: Miner. Ass. Canada, 2008, vol. 40.Google Scholar
  38. 38.
    Lindgreen, H., Drits, V.A., Sakharov, B.A., et al., The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk, Clay Miner., 2002, vol. 37, no. 3, pp. 429–450.CrossRefGoogle Scholar
  39. 39.
    Logvinenko, N.V. and Orlova, L.V., Obrazovanie i izmenenie osadochnykh porod na kontinente i v okeane (Formation and Alteration of Sedimentary Rocks in the Continent and Ocean), Leningrad: Nedra, 1987.Google Scholar
  40. 40.
    Marin-Carbonne, J., Rollion-Bardc, C., Bekkerd, A., et al., Coupled Fe and S isotope variations in pyrite nodules from Archean shale, Earth Planet. Sci. Lett., 2014, vol. 392, pp. 67–79.CrossRefGoogle Scholar
  41. 41.
    Maslennikov, V.V., Sedimentogenez, gal’miroliz i ekologiya kolchedanonosnykh paleogidrotermal’nykh polei (na primere Yuzhnogo Urala) (Sedimentogenesis, Halmyrolysis, and Ecology of the Paleohydrothermal Massive Sulfide Fields with the South Urals as Example), Miass: Geotur, 1999.Google Scholar
  42. 42.
    Maslennikov, V.V., Litogenez i kolchedanoobrazovanie (Lirhogenesis and Massive Sulfide Formation), Miass: IMin UrO RAN, 2006.Google Scholar
  43. 43.
    Maslennikov, V.V., Ayupova, N.R., Herrington, R.E., and Danyushevsky, L.V., Implication of halmyrolysis in migration of REE during formation of ferruginous sedimentary rocks in Uzel’ga massive sulphide deposits, Southern Urals (Russia), Mineral Exploration and Sustainable Development, Proc. 7th Bienn. SGA Meeting, Athens, 2003, vol. 1, pp. 147–150.Google Scholar
  44. 44.
    Maslennikov, V.V., Ayupova, N.R., Herrington, R.J., et al., Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals, Ore Geol. Rev, 2012, vol. 47, pp. 5–41.CrossRefGoogle Scholar
  45. 45.
    Maslennikov, V.V., Ayupova, N.R., Maslennikova, S.P., et al., Toksichnye elementy v kolchedanoobrazuyushchikh sistemakh (Toxic Elements in the Massive Sulfide-Forming Systems), Yekaterinburg: RIO UrO RAN, 2014.Google Scholar
  46. 46.
    Maslennikov, V.V., Ayupova, N.R., Artem’ev, D.A., and Tseluiko, A.S., Microtopochemistry of the marcasite–pyrite nodule in illite–hematite gossanites of the Lahanos massive sulfide Cu–Zn deposit (Pontides, Turkey) based on the LA-ICP-MS data, Mineralogy (Inst. Miner., Miass), 2017a, no. 3, pp. 48–70.Google Scholar
  47. 47.
    Maslennikov, V.V., Ayupova, N.R., Maslennikova, S.P., et al., Sulfide nodules in massive sulfide deposits: Occurrence conditions, typochemistry, and controlling factors, in Metallogeniya drevnikh i sovremennykh okeanov-2017 (Metallogeny of Ancient and Modern Oceans-2017), Miass: IMin UrO RAN, 2017b, pp. 43–47.Google Scholar
  48. 48.
    Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (na primere Urala) (Sulfide Chimneys of Paleozoic “Black Smokers”: Evidence from the Urals), Yekaterinburg: Miass, 2007.Google Scholar
  49. 49.
    Meffre, S., Large, R.R., Scott, R., et al., Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2377–2391.CrossRefGoogle Scholar
  50. 50.
    Melekestseva, I.Yu., Geterogennye kobal’t-mednokolchedannye mestorozhdeniya v ul’tramafitakh paleoostrovoduzhnykh struktur (Heterogeneous Massive Sulfide Co–Cu Deposits in the Ultramafic Paleoisland-Arc Structures), Moscow: Nauka, 2007.Google Scholar
  51. 51.
    Meyer, F.M., Oberthur, T., Robb, L.J., et al., Cobalt, nickel and gold in pyrite from primary gold deposits and Witwatersrand reefs, S. Afr. J. Geol., 1990, vol. 93, pp. 70–82.Google Scholar
  52. 52.
    Mikhailov, V.V., Redkozemel’nye rudy mira. Geologiya, resursy, ekonomika (Rare Earth Ores in the World: Geology, Resources, and Economics), Kiev: Kiev. Univ., 2010.Google Scholar
  53. 53.
    Mills, J.W., Galena-bearing pyrite nodules in the Nelway Formation, Salmo, British Columbia, Can. J. Earth Sci., 1974, vol. 11, no. 4, pp. 495–502.CrossRefGoogle Scholar
  54. 54.
    Murao, S. and Itoh, S., High thallium content in Kuroko-type ore, J. Geochem. Explor., 1992, vol. 43, pp. 223–231.CrossRefGoogle Scholar
  55. 55.
    Ni, Y., Hughes, J.M., and Mariano, A.N., The atomic arrangement of bastnäsite-(Ce), Ce (CO3)F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce), Am. Mineral., 1993, vol. 78, pp. 415–418.Google Scholar
  56. 56.
    Prokin, V.A., Buslaev, F.P., Ismagilov, M.I., et al., Mednokolchedannye mestorozhdeniya Urala: Geologicheskoe stroenie (Massive Sulfide Copper Deposits in the Urals: Geological Structure), Sverdlovsk: UrO RAN, 1988.Google Scholar
  57. 57.
    Raiswell, R. and Berner, R.A., Pyrite formation in euxinic and semi-euxinic sediments, Am. J. Sci., 1985, vol. 8, pp. 710–724.CrossRefGoogle Scholar
  58. 58.
    Rickard, D., Sulfide sediments and sedimentary rocks, in Developments in Sedimentology, Loon, A.J., Ed., Netherlands: Elsevier, 2012.Google Scholar
  59. 59.
    Safina, N.P. and Ayupova, N.R., Gold in sulfide ores of the Talgan massive sulfide Cu–Zn deposit, South Urals, in Mineralogiya Urala (Mineralogy of the Urals), Miass: IMin UrO RAN, 2003, vol. 2, pp. 7–9.Google Scholar
  60. 60.
    Safina, N.P. and Maslennikov, V.V., Rudoklastity kolchedannykh mestorozhdenii Yaman-Kasy i Saf’yanovskoe (Ural) (Ore Clastites in the Yaman-Kasy and Saf’yanov Massive Sulfide Deposits, Urals), Miass: Uro RAN, 2009.Google Scholar
  61. 61.
    Safina, N.P., Maslennikov, V.V., Artem’ev, D.A., and Arkhireeva, N.S., Microtopochemistry and typochemistry of pyrite nodule from the carbonaceous aleuropelites of the Saf’yanov massive sulfide deposit (Central Urals), Mineralogy (Inst. Miner., Miass), 2017, no. 4, pp. 22–36.Google Scholar
  62. 62.
    Scott, R.J., Meffre, S., Woodhead, J., et al., Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration, Econ. Geol., 2009, vol. 104, pp. 1143–1168.CrossRefGoogle Scholar
  63. 63.
    Srodon, J., Morgan dj., Eslinger E.V., et al. Chemistry of illite-smectite and end-member illite, Clays Clay Miner., 1986, vol. 34, pp. 368–378.CrossRefGoogle Scholar
  64. 64.
    Staudigel, H. and Hart, S.R., Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget, Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 337–350.CrossRefGoogle Scholar
  65. 65.
    Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of the Theory of Lithogenesis), Moscow: AN SSSR, 1962, vol. 2.Google Scholar
  66. 66.
    Thomas, H.V., Large, R.R., Bull, S.W., et al., Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for ore genesis, Econ. Geol., 2011, vol. 106, pp. 1–31.CrossRefGoogle Scholar
  67. 67.
    Utzmann, A., Hansteen, T., and Schmincke, H.-U., Trace element mobility during sub-seafloor alteration of basaltic glass from Ocean Drilling Program Site 953 (off Gran Canaria), Int. J. Earth Sci., 2002, vol. 91, pp. 661–679.CrossRefGoogle Scholar
  68. 68.
    Valle, N., Verney-Carron, A., Sterpenich, J., et al., Elemental and isotopic (Si and O) tracing of glass alteration mechanisms, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 3412–3430.CrossRefGoogle Scholar
  69. 69.
    Velde, B. and Medhioub, M., Approach to chemical equilibrium in diagenetic chlorites, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 122–127.CrossRefGoogle Scholar
  70. 70.
    Vikentyev, I.V., Invisible and Microscopic Gold in Pyrite: Methods and New Data for Massive Sulfide Ores of the Urals, Geol.Ore Deposits, 2015, vol. 57, no. 4, pp. 237–265.CrossRefGoogle Scholar
  71. 71.
    Vikentyev, I.V., Belogub, E.V., Novoselov, K.A., and Moloshag, V.P., Metamorphism of volcanogenic massive sulphide deposits in the Urals, Ore Geol. Rev., 2017, vol. 85, pp. 30–63.CrossRefGoogle Scholar
  72. 72.
    Wilson, S.A., Ridley, W.I., and Koenig, A.E., Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique, J. Anal. At. Spectrom., 2002, vol. 17, pp. 406–409.CrossRefGoogle Scholar
  73. 73.
    Yapaskurt, O.V., Predmetamorficheskie izmeneniya osadochnykh porod v stratisfere. Protsessy i faktory (Premetamorphic Alterations of Rocks in the Stratisphere: Processes and Factors), Moscow: GEOS, 1999.Google Scholar
  74. 74.
    Yushko-Zakharova, O.E., Ivanov, V.V., Soboleva, L.N., et al., Mineraly blagorodnykh metallov. Spravochnik (Minerals of Noble Metals: Reference Book), Moscow: Nedra, 1986.Google Scholar
  75. 75.
    Zaikov, V.V., Vulkanizm i sul’fidnye kholmy paleokeanicheskikh okrain: na primere kolchedanonosnykh zon Urala i Sibiri (Volcanism and Sulfide Buildups at Paleoceanic Margins: Evidence from Massive Sulfide Zones in the Urals and Siberia), Moscow: Nauka, 2006.Google Scholar
  76. 76.
    Zaritskii, P.V., Peculiarities of the distribution, morphology, and composition of sulfide nodules in the Dnieper brown coal basin, Dokl. Akad. Nauk SSSR, 1962, vol. 144, no. 6, pp. 1355–1358.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. R. Ayupova
    • 1
    • 2
    Email author
  • V. V. Maslennikov
    • 1
    • 2
  • D. A. Artem’ev
    • 1
  • I. A. Blinov
    • 1
  1. 1.Institute of Mineralogy, SU FRC MG UB RAS, Ilmen Nature ReserveMiassRussia
  2. 2.South Ural UniversityChelyabinskRussia

Personalised recommendations