Lithology and Mineral Resources

, Volume 53, Issue 5, pp 404–416 | Cite as

Basal Moraines: Communication 2. Identification and Some Concepts of Their Genetic Interpretation

  • O. G. Epshtein


Common basal moraines display diverse glaciodynamic structures inherited from the parental moraine-containing ice. Since these glacial diamictons are marked by instable structure and composition, they can resemble sediments of another origin and their identification is a difficult task. We cannot make substantiated genetic conclusions based on certain lithological properties typical of glacial diamictons. Only a set of specific features can provide sufficiently reliable determination of their glacial nature. Other methodical approaches applied in different regions, the Barents Sea included, for the identification of glacial diamictons based on the highly superficial analysis of some (usually secondary) features lead to a biased genetic interpretation of moraines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreicheva, L.N., Osnovye moreny evropeiskogo severovostoka Rossii i ikh litostratigraficheskoe znachenie (Main Moraines in the European Northeastern Part of Russia and Their Lithostratigraphic Significance), St. Petersburg: Nauka, 1992.Google Scholar
  2. Andreicheva, L.N., Pleistotsen evropeiskogo Severo-Vostoka (Pleistocene in the European North Russia), Yekaterinburg: UrO RAN, 2002.Google Scholar
  3. Apukhtin, N.I., Correlation of Upper Pleistocene reference sections in the northwestern Soviet Union and criticism of marinist ideas, in Problemy korrelyatsii noveishikh otlozhenii Severa Evrazii (Problems of the Correlation of Recent Sediments in North Eurasia), Leningrad, 1971, pp. 153–156.Google Scholar
  4. Arnaud, E. and Eyles, C.N., Glacial influence on Neoproterozoic sedimentation: the Smalfjord Formation, northern Norway, Sedimentology, 2002, vol. 49, pp. 765–788.CrossRefGoogle Scholar
  5. Chumakov, N.M., Izuchenie Drevnikh lednikovykh otlozhenii (Study of Ancient Glacial Deposits), Trudy GIN RAN SSSR, 1990, vol. 93.Google Scholar
  6. Danilov, I.D., Pleistotsen morskikh subarkticheskikh ravnin (Pleistocene of Marine Subarctic Lowlands), Moscow: MGU, 1978.Google Scholar
  7. Danilov, I.D., Genesis of the moraine-type sequences in lowlands of North Russia, Issledovaniya pribrezhnykh ravnin i shel’fa Arkticheskikh morei (Studies of Coastal Plains and Shelf of the Arctic Seas), Danilov, I.D., Ed., Moscow: MGU, 1979.Google Scholar
  8. Dibner, V.D., “Ancient clays” and relief of the Barents–Kara shelf–direct evidence of its sheet glaciation in the Pleistocene, in Problemy polyarnoi geografii (Problems of the Polar Geography), Leningrad: Gidrometeoizdat, 1968, pp. 118–122.Google Scholar
  9. Dreimanis, A., Are marine fossils in the Quaternary deposits a sufficient evidence for marine deposition?, Baltica, 1970, vol. 4, pp. 313–322.Google Scholar
  10. Dunaev, N.N., Levchenko, O.V., Merklin, L.R., and Pavlidis, Yu.A., The Novaya Zemlya shelf in the Late Quaternary, Okeanologiya, 1995, vol. 35, no. 3, pp. 440–450.Google Scholar
  11. Edwards, M.B., Glacial influence on Neoproterozoic sedimentation: Smalfjord Formation, northern Norway–discussion, Sedimentology, 2004, vol. 51, pp. 1409–1417.CrossRefGoogle Scholar
  12. Elverhøi, A., Glacigenic and associated marine sediments in the Weddell Sea, fjords of Spitsbergen and the Barents Sea: review, Mar. Geol., 1984, vol. 57, pp. 53–88.CrossRefGoogle Scholar
  13. Elverhøi, A., Nyland-Berg, M., Russwurm, L., and Solheim, A., Late Weichselian ice recession in the Central Barents Sea, in Geological history of Polar Ocean: Arctic versus Antarctic, Bleil, U. and Thiede, J., Eds., Netherlands: Kluver Acad. Publ., 1990, pp. 289–307.CrossRefGoogle Scholar
  14. Epshtein, O.G., Morphogenetic features of the coarse-clastic material of Pleistocene boulder loam in the northern European part of the Soviet Union, in Paleogeografiya i poleznye iskopaemye pleistotsena severa Evrazii (Pleistocene Paleogeography and Mineral Resources in North Eurasia), Chochia, N.G., Ed., Leningrad: VGO, 1986, pp. 106–110.Google Scholar
  15. Epshtein, O.G., Kompleksnoe obosnovanie raschleneniya i razrabotka skhem stroeniya pokrova noveishikh otlozhenii v osnovnykh neftegazoperspektivnykh raionakh Barentseva morya (Complex substantiation of the division and reconstruction of the cover of recent sediments in major petroliferous areas of the Barents Sea), Riga: VNIImorgeo, 1990a.Google Scholar
  16. Epshtein, O.G., The Vast’yan Kon outcrop in the lower Pechora–a thick section of the terminal moraine buildup at the active margin of the Novaya Zemlya ice cover, Byull. Komiss. Izuch. Chetvert. Perioda, 1990b, no. 59, pp. 14–28.Google Scholar
  17. Epshtein, O.G., Modified five-index scale for the visual estimation of roundness of the clastic material and some results obtained, Lithol. Miner. Resour., 1995, no. 6, pp. 635–644.Google Scholar
  18. Epshtein, O.G., Glaciotectonites–basal zone of the Quaternary cover in the southeastern Barents Sea, in Fundamental’nye problemy kvartera: itogi izucheniya i osnovnye napravleniya dal’neishikh issledovanii (Fundamental Problems of the Quarter: Results of the Study and Main Directions for Further Studies), Moscow: GEOS, 2007, pp. 477–480.Google Scholar
  19. Epshtein, O.G., Upper Cenozoic glacial shelves - Essential elements of the structure and development of continental margins and volcanic plateau, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2011, vol. 86, no. 2, pp. 76–96.Google Scholar
  20. Epshtein, O.G., Late Pleistocene–Holocene sedimentation cycle on glacial shelves, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2012, vol. 87, no. 3, pp. 3–19.Google Scholar
  21. Epshtein, O.G., Basal (Basic) moraines: Problem of the identification and principles of new classification, Lithol. Miner. Resour. 2017, no. 2, pp. 125–146.CrossRefGoogle Scholar
  22. Epshtein, O.G., Basal (Basic) moraines: Communication 1. Essential lithological features, Lithol. Miner. Resour, 2018, no. 4, pp. 270–282.CrossRefGoogle Scholar
  23. Epshtein, O.G. and Chistyakova, I.A., The Pechora Sea shelf in the late Weichselian–Holocene: Main sedimentological and paleogeographic events, Byull. Komiss. Izuchen. Chetvert. Perioda, 2005, no. 66, pp. 107–123.Google Scholar
  24. Epshtein, O.G. and Gataullin, V.N., Lithology and formation conditions of Quaternary sediments in the eastern (Novaya Zemlya) sector of the Barents Sea, Litol. Polezn. Iskop., 1993, no. 1, pp. 119–124.Google Scholar
  25. Epshtein, O.G. and Lavrushin, Yu.A., Glaciomarine sedimentation as a specific stage of shelf sediment accumulation, Dokl. Earth Sci., 2003, vol. 393, no. 4, pp. 521–523.Google Scholar
  26. Epshtein, O.G., Romanyuk, B.F., and Gataullin, V.N., Pleistocene Scandinavian and Novaya Zemlya ice sheets in the southern Barents Sea and northern Russian plain, Byull. Komiss. Izuchen. Chetvert. Perioda, 1999, no. 63, pp. 132–155.Google Scholar
  27. Epshtein, O.G., Starovoitov, A.V., and Dlugach, A.G., “Soft moraines” in the Arctic and Antarctic—a new facies type of glacial deposits, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2010, vol. 85, no. 2, pp. 23–44.Google Scholar
  28. Epshtein, O.G., Dlugach, A.G., Starovoitov, A.V., and Romanyuk, B.F., Pleistocene sediments of the eastern Barents Sea (Central Deep and Murmansk bank areas): Communication 1. Occurrence conditions and main structural features, Lithol. Miner. Resour., 2011a, no. 2, pp. 115–134.CrossRefGoogle Scholar
  29. Epshtein, O.G., Dlugach, A.G., Starovoitov, A.V., and Romanyuk, B.F., Pleistocene sediments of the eastern Barents Sea (Central Deep and Murmansk bank areas): Communication 2. Lithological composition and occurrence conditions, Lithol. Miner. Resour., 2011b, no. 3, pp. 220–249.CrossRefGoogle Scholar
  30. Epshtein, O.G., Dlugach, A.G., and Starovoitov, A.V., Seismostratigraphy of the sedimentary cover as a basis for forecasting engineering-geological conditions on the Barents Sea shelf, Inzhen. Geol., 2014, no. 5, pp. 30–41.Google Scholar
  31. Eyles, C.H. and Eyles, N., Glaciomarine sediments of the Isle of Man as a key to the late Pleistocene stratigraphic investigations in the Irish Sea Basin, Geology, 1984, vol. 12, pp. 350–364.CrossRefGoogle Scholar
  32. Eyles, N., Eyles, C.H., and Miall, A.D., Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences, Sedimentology, 1983, vol. 30, pp. 393–410.CrossRefGoogle Scholar
  33. Faleide, J.I., Tsikalas, F., Breivik, A.J., et al., Structure and evolution of the continental margin off Norway and Barents Sea, Episodes, 2008, vol. 31, pp. 82–91.Google Scholar
  34. Fielder, A. and Faleide, J.I., Cenozoic sedimentation along the southwestern Barents Sea margin in relation to uplift and erosion of the shelf, Glob. Planet. Change, 1996, vol. 12, pp. 75–93.CrossRefGoogle Scholar
  35. Flint, R.F., Sanders, J.E., and Rodgers, J., Diamictite, a substitute term for symmictite, GSA Bull., 1960, vol. 71, pp. 1809–1810.CrossRefGoogle Scholar
  36. Gataullin, V., Polyak, L., Epstein, O., and Romanyuk, B., Glacigenic deposits of the Central Deep: a key to the Late Quaternary evolution of the eastern Barents Sea, Boreas, 1993, vol. 22, pp. 47–58.CrossRefGoogle Scholar
  37. Gataullin, V., Mangerud, J., and Svensdsen, J.I., The extent of the Late Weichselian ice sheet in the southeastern Barents Sea, Glob. Planet. Change, 2001, vol. 31, pp. 453–474.CrossRefGoogle Scholar
  38. Gol’bert, A.V., Gudina, V.I., Zudin, A.N., et al., Vast’yan Kon: A reference Pleistocene section in the northern Pechora lowland, in Litologiya i usloviya obrazovaniya chetvertichnykh otlozhenii severa Evrazii (Lithology and Formation Conditions of Quaternary Sediments in North Eurasia), Novosibirsk: IGIG SO AN SSSR, 1974, pp. 137–210.Google Scholar
  39. Guslitser, B.I., Origin of boulder loam in the northern Ural region, in Geologiya i paleontologiya Severo-Vostoka Evropeiskoi chasti SSSR (Geology and Paleontology of the Northeastern European Part of the Soviet Union), Syktyvkar, 1973, pp. 3–19.Google Scholar
  40. Guslitser, B.I. and Loseva, E.I., Verkhnii kainozoi Pechorskoi nizmennosti (The Upper Cenozoic in the Pechora Lowland), Syktyvkar: Komi Fil. AN SSSR, 1979.Google Scholar
  41. Harland, W.B., Htrod, K.N., and Krinsley, D.H., The definition and identification of tills and tillites, Earth-Sci. Rev., 1966, vol. 2, pp. 225–256.CrossRefGoogle Scholar
  42. Henriksen, M., Mangerud, J., Maslenikova, O., and Tveranger, J., Weichselian stratigraphy and glaciotectonic deformation along the Pechora River, Arctic Russia, Glob. Planet. Change, 2001, vol. 31, pp. 297–319.CrossRefGoogle Scholar
  43. Heroy, D.C. and Anderson, J.B., Ice-sheet extent of the Antarctic Peninsula region during the Last Glacial Maximum (LGM)—Insights from glacial geomorphology, GSA Bull., 2005, vol. 117, pp. 1497–1512.CrossRefGoogle Scholar
  44. Hjort, C., Ingólfsson Ó., Möller, P., and Lirio, J.M., Holocene glacial history and sea-level change on James Ross Island, Antarctic Peninsula, J. Quat. Sci., 1997, vol. 12, pp. 259–273.CrossRefGoogle Scholar
  45. Ingólfsson Ó., Hjort, C., Björck, S., and Smith, R.I.L., Late Pleistocene and Holocene glacial history of James Ross Island, Antarctic Peninsula, Boreas, 1992, vol. 21, pp. 209–222.CrossRefGoogle Scholar
  46. Jennings, A., Syvitsky, J., Gerson, L., et al., Chronology and paleoenvironments during the Late Weichselian deglaciation of southwest Iceland shelf, Boreas, 2000, vol. 29, pp. 167–183.CrossRefGoogle Scholar
  47. Karrow, P.F., Dreimanis, A., Kemmis, T.J., and Halleberg, G.R., Lihofacies types and vertical profile modes: an alternative approach to the description and environment interpretation of glacial diamict and diamictite sequences, Sedimentology, 1984, vol. 31, pp. 883–890.CrossRefGoogle Scholar
  48. Klenova, M.V., Geologiya Barentseva morya (Geology of the Barents Sea), Moscow: AN SSSR, 1960.Google Scholar
  49. Kostin, D.A. and Tarasov, G.A., Formation conditions of Quaternary sediments on the southern shelf of the Zemlya Frantsa-Iosifa Archipelago, in Ekologiya antropogena i sovremennosti: priroda i chelovek (Ecology of the Anthropogene and Modern Times), St. Petersburg: Gumanistika, 2004, pp. 107–113.Google Scholar
  50. Krapivner, R.B., Rapid sagging of the Barents shelf over the last 15–16 ka, Geotectonics, 2006, no. 3, pp. 197–207.CrossRefGoogle Scholar
  51. Krapivner, R.B., Indications of neotectonic activity at the Barents Sea shelf, Geotectonics, 2007, no. 2, pp. 149–162.CrossRefGoogle Scholar
  52. Krapivner, R.B., Origin of friable sediments of the Barents Sea shelf, Lithol. Miner. Esrour., 2009a, no. 1, pp. 87–99.CrossRefGoogle Scholar
  53. Krapivner, R.B., Origin of diamictons on the Barents Sea shelf, Lithol. Miner. Resour., 2009b, no. 2, pp. 120–134.CrossRefGoogle Scholar
  54. Krapivner, R.B., Issue of the genesis of recent sediments on the Barents Sea shelf, Lithol. Miner. Resour., 2014, no. 4, pp. 306–322.Google Scholar
  55. Krapivner, R.B, Gritsenko, I.I., and Kostyukhin, A.I., Seismostratigraphy of Recent Sediments in the South Barents Sea Region, in Kainozoi shel’fa i ostrovov Sovetskoi Arktiki (Cenozoic of the Shelf and Islands in the Soviet Arctic), Zarkhidze, V.S. and Kulakov, Yu.N., Eds., Leningrad: PGO Sevmorgeologiya, 1986, pp. 7–14.Google Scholar
  56. Krapivner, R.B., Gritsenko, I.I., and Kostyukhin, A.I., Late Cenozoic seismostratigraphy and paleogeography of the South Barents Sea region, Chetvertichnaya paleoekologiya i paleogeografiya Severnykh morei (Quaternary Paleoecology and Paleogeography of North Seas), Matishov, G.G. and Tarasov, G.A., Eds., Moscow: Nauka, 1988, pp. 103–123.Google Scholar
  57. Krasnov, N.N., Debatable issues in the glacial theory and antiglacialism, in Problemy stratigrafii i paleogeografii (Problems of Stratigraphy and Paleogeography), Leningrad, 1968, pp. 226–249.Google Scholar
  58. Lavrushin, Yu.A. and Epshtein, O.G., Pleistocene geological events in the northern part of East Europe and southern Barents Sea: Evidence from natural reference sections, Byull. Komiss. Izuch. Chetvert. Perioda, 2001, no. 64, pp. 35–60.Google Scholar
  59. Lisitsyn, A.P., Types of marine sediments associated with the activity of ice, Dokl. AN SSSR, 1958, vol. 118, no. 2, pp. 373–376.Google Scholar
  60. Lisitsyn, A.P., Protsessy sovremennogo osadkoobrazovaniya v Beringovom more (Processes of Recent Sedimentation in the Bering Sea), Moscow: Nauka, 1966.Google Scholar
  61. Luternauer, J.L., Conway, K.W., Clague, J.J., and Blaise, B., Late Quaternary geology and geochronology of the central shelf of western Canada, Mar. Geol., 1989, vol. 89, pp. 57–68.CrossRefGoogle Scholar
  62. MacLean, B., Vilks, G., Hardy, I., et al., Quaternary sediments in Hudson Strait and Ungava Bay, Geol. Surv. Can. Bull., 2001, pp. 71–125.Google Scholar
  63. Moreny i dinamika oledenenii Zapadnoi Sibiri (Moraines and Dynamics of Glaciation in West Siberia) Arkhipov, S.A., Ed., Novosibirsk: Nauka, 1987.Google Scholar
  64. Murdmaa, I., Ivanova, E., Duplessy, J.-C., et al., Facies system of the Eastern Barents Sea since glaciation to present, Mar. Geol., 2006, vol. 230, pp. 275–303.CrossRefGoogle Scholar
  65. Ovenshine, A.T., Observation of iceberg rafting in Glacier Bay, Alaska, and the identification of ancient ice-rafted deposits, GSA Bull., 1970, vol. 81, pp. 891–894.CrossRefGoogle Scholar
  66. Pavlidis, Yu.A. and Polyakova, E.I., Late Pleistocene and Holocene environments and paleoceanography of the Barents Sea: evidence from seismic and biostratigraphic data, Mar. Geol., 1997, vol. 143, pp. 189–205.CrossRefGoogle Scholar
  67. Pogodina, I.A., Stratigraphy of Upper Quaternary sediments in the Barents Sea based on foraminifers, Extended Abstract of PhD (Geol.–Miner.) Dissertation, MGU: Moscow, 2000.Google Scholar
  68. Pogodina, I.A. and Tarasov, G.A., The sedimentation processes and evolution of foraminiferal communities during the Last Deglaciation on the Barents Sea, Oceanology, 2002, vol. 42, no. 1, pp. 148–152.Google Scholar
  69. Polyak, L. and Mikhailov, V., Post-glacial environments of the southeastern Barents Sea: foraminiferal evidence, in Late Quaternary palaeoceanography of the North Atlantic margin, Andrews, J.T., Austin, W.E.N., Bergsten, H., and Jennings, A.E., Eds., Geol. Soc. Spec. Publ., 1996, no. 111, pp. 323–337.Google Scholar
  70. Polyak, L., Lehman, S.J., Gataullin, V., and Jull, A.J.T., Two-step deglaciation of the southeastern Barents Sea, Geology, 1995, vol. 23, pp. 567–571.CrossRefGoogle Scholar
  71. Polyak, L., Gataullin, V., Okuneva, O., and Stelle, V., New constrains on the limits of the Barents–Kara ice sheet during the Last Glacial Maximum based on borehole stratigraphy from the Pechora Sea, Geology, 2000, vol. 28, pp. 611–614.CrossRefGoogle Scholar
  72. Popov, A.I., Pleistocene deposits in the lower course of the Pechora River, in Kainozoiskii pokrov Bol’shezemel’skoi tundry (The Cenozoic Cover of Bol’shaya Zemlya Tundra), Moscow: MGU, 1963, pp. 24–49.Google Scholar
  73. Praeg, D.B., Maclean B., Hardy, I.A., and Mudie, P.J., Quaternary geology of southeast Baffin Island continental shelf, Geol. Surv. Can. Paper 85-14, 1986.Google Scholar
  74. Rasmussen, E. and Fjelskaar, W., Quantification of the Pliocene-Pleistocene erosion of the Barents Sea from present-day bathymetry, Glob. Planet. Change, 1996, vol. 12, pp. 119–133.CrossRefGoogle Scholar
  75. Sættem, J., Poole, D.A.R., Ellingsen, L., and Sejrup, H.P., Glacial geology of outer Bjørnøyrenna, southwestern Barents Sea, Mar. Geol., 1992, vol. 103, pp. 15–31.CrossRefGoogle Scholar
  76. Seismic Stratigraphy–Applications to Hydrocarbon Exploration, Payton, C.E., Ed., Tulsa: Am. Ass. Petrol. Geol., 1977.Google Scholar
  77. Translated under the title Seismicheskaya stratigrafiya, Moscow: Mir, 1982.Google Scholar
  78. Simonov, A.N., The formation of some specific features of the lithology of Middle and Upper Pleistocene bottom moraines in the northern Pechora lowland, in Protsessy kontinental’nogo litogeneza (Processes of the Continental Lithogenesis), Shantser, E.V., Ed., Moscow: Nauka, 1980, pp. 156–166.Google Scholar
  79. Solheim, A. and Kristoffersen, Y., Sediments above the Upper Regional Unconformity: Thickness, Seismic Stratigraphy and Outline of Glacial History, Oslo: Nor. Polarinst. Skr. 179 B, 1984.Google Scholar
  80. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., et al., Late Quaternary ice sheet history of northern Eurasia, Quat. Sci. Rev., 2004, vol. 23, pp. 1229–1271.CrossRefGoogle Scholar
  81. Thomas, G.S.P. and Dackombe, R.V., Comment and reply on “glaciomarine sediments on the Isle Man as a key to Late Pleistocene stratigraphic investigation in the Irish Sea basin,” Geology, 1985, vol. 13, pp. 445–446.CrossRefGoogle Scholar
  82. Troitskii, S.L., Sovremennyi antiglyatsializm. Kriticheskii ocherk (Modern Antiglacialism: Critical Essay), Saks, V.N., Ed., Moscow: Nauka, 1975.Google Scholar
  83. Tveranger, J., Astakhov, V., Mangerud, J., and Svendsen, J.I., Signature of the last shelf-centered glaciation at a key section in the Pechora Basin, Arctic Russia, J. Quat. Sci., 1998, vol. 13, pp. 189–203.CrossRefGoogle Scholar
  84. Urvantsev, N.N., Quaternary glaciation in the Taimyr region, Priroda, 1930, no. 4, pp. 422–434.Google Scholar
  85. Yakovlev, S.A., Marker boulders, moraines, and domains of the Novaya Zemlya glaciation on the Russian plain, Byull. Komiss. Izuch. Chetvert. Perioda, 1939, no. 5, pp. 21–44.Google Scholar
  86. Yashin, D.S and Kosheleva, V.A., Principles of the stratification of the Quaternary sequence on the Barents–Kara shelf, in Glavneishie itogi v izuchenii chetvertichnogo perioda i osnovnye napravleniya issledovanii v XXI veke (tezisy dokl.) (Most Important Results in the Study of Quaternary Period and Main Directions for Studies in the 21st Century: Abstracts of Papers), St. Petersburg: VSEGEI, 1999, pp. 213–214.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations