Lithology and Mineral Resources

, Volume 53, Issue 4, pp 283–306 | Cite as

C, О, S, and Sr Isotope Geochemistry and Chemostratigraphy of Ordovician Sediments in the Moyero River Section, Northern Siberian Platform

  • B. G. PokrovskyEmail author
  • A. V. Zaitsev
  • A. V. Dronov
  • M. I. Bujakaite
  • A. V. Timokhin
  • O. L. Petrov


The 87Sr/86Sr ratio in gypsum and limestones of the Ordovician section of the Moyero River decreases from the bottom upward from 0.7091‒0.7095 in the Irbukli Formation (Nyaian Regional Stage, ~Lower Ordovician Tremadocian Stage) to 0.7080 in the upper part of the Dzherom Formation (Dolborian Regional Stage, ~Upper Ordovician Katian Stage), which is well consistent with biostratigraphic subdivision of the section and existing concept concerning the strontium isotope evolution of the World Ocean. The most characteristic feature of the carbon isotope curve is decrease of δ13С values in carbonates from weakly positive values (0.5…1.1‰) in the Irbukli Formation (Nyaian Regional Stage) to sharply negative values (–5.4...–5.8‰) in the middle part of the Kochakan Formation (top of the Kimaian Regional Stage, ~end of the Dapingian–base of the Darriwilian Stage). Increase of δ18О from 20‒22‰ to 26‒28‰, the negative correlation of δ13С and δ18О, and decrease of δ34S in gypsum from 30‒32‰ to 22‒24‰ in this interval indicate that the 13С depletion of carbonates was not related to the sulfate reduction and oxidation of organic matter during diagenesis and that the negative δ13С excursion was of primary nature. The presence of negative δ13С anomalies at this stratigraphic level in Ordovician sections of the South and North America (Buggish et al., 2003; Edwards and Saltzman, 2014; McLaughlin et al., 2016) indicates the global or subglobal distribution of this event, which was possibly related to the emergence of the oldest ground vegetation. Against the general decrease of δ13С, the lower part of the section reveals three low-amplitude (1‒2‰) positive excursions, the position of which in general confirms the existing correlation scheme of the Moyero River section with the international scale. The upper part of the section is characterized by the alternation of low-δ13С intervals (from–2 to–3‰) and brief positive excursions with amplitude of 0.5‒1.3‰. The positive δ13С excursion terminating the Ordovician section of the Moyero River correlates with the δ13С excursion in the middle Katian Stage, while the δ13С excursion in the lower part of the Baksian Regional Stage correlates with the excursion marking the Katian–Sandbian boundary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsaar, L., Kaljo, D., Martma, T., et al., Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history, Palaeogeogr., Palaeoclimat., Palaeoecol., 2010, vol. 294, pp. 189–201.CrossRefGoogle Scholar
  2. Ainsaar, L., Peep Männik, P., Dronov, A.V., et al., Carbon isotope chemostratigraphy and conodonts of the Middle-Upper Ordovician succession in the Tungus Basin, Siberian Craton, Palaeoworld, 2015, vol. 24, pp. 123–135.CrossRefGoogle Scholar
  3. Azmy, K., Stouge, S., Jorgen, L., et al., Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: Implications for correlations with St. George Group in western Newfoundland (Canada) and beyond, Sediment. Geol., 2010, vol. 225, pp. 67–81.CrossRefGoogle Scholar
  4. Banner J.L. and Hanson G.N., Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 3123–3137.CrossRefGoogle Scholar
  5. Bergström, S.M., Chen, X., Gutiérrez-Marco, J.C., and Dronov, A., The new chronostratigraphic classification of the Ordovician system and its relations to major regional series and stages and to δ13C chemostratigraphy, Lethaia, 2009, vol. 42, pp. 97–107.CrossRefGoogle Scholar
  6. Bralower, T.J., Thomas, D.J., Zachos, J.C., et al., Highresolution records of the Late Paleocene Thermal Maximum and Caribbean volcanism: Is there a causal link?, Geology, 1997, vol. 25, pp. 963–965.CrossRefGoogle Scholar
  7. Brand, U. and Veizer, J., Chemical diagenesis of a multicomponent carbonate system–1. Trace elements, J. Sediment. Petr., 1980, vol. 50, pp. 1219–1236.Google Scholar
  8. Buggisch, W., Keller, M., and Lehnert, O., Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2003, vol. 195, pp. 357–373.CrossRefGoogle Scholar
  9. Clark, D.L., Sweet, W.C., Bergström, S.M., et al., Treatise on Invertebrate Paleontology, part W (Miscellanea). Supplement 2 (Conodonta), Kansas: Univ. Kansas Geol. Soc. Am. Press, 1981.Google Scholar
  10. Clauer, N., Pierret, M.C., and Chaudhuri, S., Role of subsurface brines in salt balance: the case study of the Caspian Sea and Kara Bogaz Bay, Aquatic Geochem., 2009, vol. 15, pp. 237–261.CrossRefGoogle Scholar
  11. Cocks, L.R.M. and Torsvik, T.H., Siberia, the wondering northern terrane, and its changing geography through the Paleozoic, Earth-Sci. Rev., 2007, vol. 82, pp. 29–74.CrossRefGoogle Scholar
  12. Davies, N.S. and Gibling, M.R., Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets, Geology, 2010, vol. 38, no. 1, pp. 51–54.CrossRefGoogle Scholar
  13. Dronov, A., Late Ordovician cooling event: Evidence from the Siberian Craton, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2013, vol. 389, no. 1, pp. 87–95.CrossRefGoogle Scholar
  14. Dronov, A.V. and Kushlina, V.B., First find of treaces of Cruziana and Rusophycus in the Ordovician in the Anabar region and its paleogeographic significance, in Diversifikatsiya i etapnost evolyutsii organicheskogo mira v svete paleontologicheskoi letopisi (Diversification and Stagewise Evolution of Organic World in the Paleontological Record), Bogdanov, T.N., Ed., St. Petersburg, 2014, pp. 60–61.Google Scholar
  15. Dronov, A.V. and Zaitsev, A.V., Upper Ordovician coldwater carbonates in the Siberian Platform, in Kontesptual’nye problemy litologicheskikh issedovanii v Rossii (Conceptual Problems of Lithological Studies in Russia), Yapaskurt, O.V., Khasanov, R.R, and Sungatullin, R.Kh., Eds., Kazan: Kazan Univ., 2011, pp. 280–284.Google Scholar
  16. Dronov, A.V., Kanygin, A.V., Timokhin, A.V., et al., Correlation of eustatic and biotic events in the Ordovician paleobasins of the Siberian and Russian platforms, Paleontol. J., 2009, vol. 43, pp. 1477–1497.CrossRefGoogle Scholar
  17. Dronov, A., Timokhin, A., and Kanygin, A., Ordovician succession at Moyero River, Siberia: preliminary results of recent investigations, in 4th Ann. Meeting IGCP 591 Abstracts and Field Guide (The Early to Middle Paleozoic Revolution), 2014.Google Scholar
  18. Dronov, A.V., Munnecke, A., and Kushlina, V.B., A newtype of cool-water carbonate buildups: Middle Ordovician Moyeronia-Angarella “reefs” of the Siberian Platform, in 12th Int. Symp. Ordovician System. Short Papers and Abstracts, 2015a, pp. 99–100.Google Scholar
  19. Dronov, A.V., Kanygin, A.V., Timokhin, A.V., and Gonta, T.V., Ordovician sequence stratigraphy of the Siberian Platform revised, in 12th Int. Symp. Ordovician System. Short Papers and Abstracts, 2015b, pp. 100–101.Google Scholar
  20. Edwards, C.T. and Saltzman, M.R., Carbon isotope (δ13Ccarb.) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, western United States: Implications for global correlation, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 399, pp. 1–20.CrossRefGoogle Scholar
  21. Edwards, C., Saltzman, M.R., Leslie, S.A., et al., Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values, Geol. Soc. Am. Bull., 2015, vol. 127, pp. 1275–1289.CrossRefGoogle Scholar
  22. Ettensohn, F.R., Origin of the Late Ordovician (mid-Mohawkian) temperate-water conditions on southeastern Laurentia: glacial or tectonic?, in The Ordovician Earth System (Geol. Soc. Am. Spec. Pap.), Finney, S.E. and Berry, W.B.N., Eds, 2010, vol. 466, pp. 163–175.Google Scholar
  23. Friedmam, I. and O’Neil, J.R., Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, Wash. D.C.: U.S. Gov. Print. Off., 1977.Google Scholar
  24. Fritz, R.D., Morgan, W.A., Longacre, S., et al., Introduction, in The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian-Ordovician Sauk Megasequence of Laurentia, Derby, J.R.,Fritz, R.D.,, Eds., AAPG Memoir, 2012, vol. 98, pp. 1–3.Google Scholar
  25. Frolov, S.V., Akhmanov, G.G., Bakay, E.A., et al., Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins, Precambrian Res., 2015, vol. 259, pp. 95–113.CrossRefGoogle Scholar
  26. Godderis, Y., Francois, L.M., and Veizer, J., The Early Paleozoic carbon cycle, Earth Planet. Sci. Lett., 2001, vol. 190, pp. 181–196.CrossRefGoogle Scholar
  27. Halverson, G.P., Hoffman, P.F., Schrag, D.P., et al., Toward a Neoproterozoic composite carbon-isotope record, Geol. Soc. Am. Bull., 2005, vol. 117, nos. 9/10, pp. 1181–1207.CrossRefGoogle Scholar
  28. Halverson, G.P., Dudas, F.O., Maloof, A.C., and Bowring, S.A., Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 256, pp. 103–129.CrossRefGoogle Scholar
  29. Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., Neoproterozoic chemostratigphy, Precambrian Res., 2010, vol. 182, pp. 337–350.CrossRefGoogle Scholar
  30. Holland, S.M. and Patzkowsky, M.E., Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States, in Paleozoic Sequence Stratigraphy: Views from the North American Craton (Geol. Soc. Am. Spec. Pap.), Witzke, B., Ludvigson, C., and Day, J., Eds., 1996, vol. 306, pp. 117–129.Google Scholar
  31. Holser, W.T. and Kaplan, I.R., Isotope geochemistry of sedimentary sulfates, Chem. Geol., 1966, vol. 1, pp. 93–135.CrossRefGoogle Scholar
  32. Husinec, A. and Bergstrom, S.M., Stable carbon-isotope record of shallow-marine evaporative epicratonic basin carbonates, Ordovician Williston Basin, North America, Sedimentology, 2015, vol. 62, pp. 314–349.Google Scholar
  33. Jacobsen, S.B. and Kaufman, A.J., The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 1999, vol. 161, pp. 37–57.Google Scholar
  34. Kaljo, D., Martma, T., and Saadre, T., Post Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 245, pp. 138–155.CrossRefGoogle Scholar
  35. Kampschulte, A. and Strauss, H., The sulfur isotopic evolution of Phanerozoic sea water based on the analysis of structurally substituted sulfate in carbonates, Chem. Geol., 2004, vol. 204, pp. 255–286.CrossRefGoogle Scholar
  36. Kanygin, A.V., Yadrenkina, A.G., Timokhin, A.V., et al., Stratigrafiya neftegazonosnykh basseinov Sibiri. Ordovik Sibirskoi platformy (Stratigraphy of Petroliferous Basins in Siberia: Ordovician in the Siberian Platform), Novosibirsk: Geo, 2007.Google Scholar
  37. Kanygin, A., Dronov, A., Timokhin, A., and Gonta, T., Depositional sequences and palaeoceanographic change in the Ordovician of the Siberian Craton, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010a, vol. 296, pp. 285–294.CrossRefGoogle Scholar
  38. Kanygin, A.V., Koren’ T.N., Yadrenkina, A.G., et al. Ordovician of the Siberian Platform, in The Ordovician Earth System, Finney, S.C. and Berry, W.B.N., Eds., 2010b, vol. 466, pp. 105–117.CrossRefGoogle Scholar
  39. Kump, L.R. and Garrels, R.M., Modeling of atmospheric O2 in the global sedimentary redox cycle, Am. J. Sci., 1986, vol. 286, pp. 337–360.CrossRefGoogle Scholar
  40. Kump, L.R., The geochemistry of mass extinction, in Treatise on Geochemistry, 2003, vol. 7, ch. 7.14, pp. 351–367.CrossRefGoogle Scholar
  41. Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr Isotope Composition in Carbonates of the Karatau Group, Southern Urals, and Standard Curve of 87Sr/86Sr Variations in the Late Riphean Ocean, Stratigr. Geol. Correlation, 2003, vol. 11, no. 5, pp. 415–449.Google Scholar
  42. Kuznetsov, A.B., Krupenin, M.T., Ovchinnikova, G.V., et al., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the southern Urals: Sr isotopic characteristics and Pb–Pb age, Lithol. Miner. Resour., 2005, no. 3, pp. 195–215.CrossRefGoogle Scholar
  43. Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the southern Urals, Stratigr. Geol. Correlation, 2008, vol. 16, no. 2, pp. 120–137.CrossRefGoogle Scholar
  44. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr Isotope composition of the World Ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy, Stratigr. Geol. Correlation, 2012, vol. 20, no. 6, pp. 501–515.CrossRefGoogle Scholar
  45. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a yool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correlation, 2014, vol. 22, no. 6, pp. 553–576.CrossRefGoogle Scholar
  46. Le Guerroue, E., Allen, P.A., Cozzi, A., et al., 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean, Terra Nova, 2006, vol. 18, pp. 147–153.Google Scholar
  47. Li, D., Shields-Zhou, G.A., Ling, H.-F., and Thirlwall, M., Chemical dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks, Chem. Geol., 2011, vol. 290, pp. 133–144.CrossRefGoogle Scholar
  48. Ludvigson, G.A., Witzke, B.J., Gonzalez, L.A., et al., Late Ordovician (Turinian-Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004, vol. 210, pp. 187–214.CrossRefGoogle Scholar
  49. McArthur, J.M., Howarth, R.J., and Shields, G.A., Strontium isotope stratigraphy, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G.,, Eds., Boston: Elsevier, 2012, pp. 127–144.Google Scholar
  50. McLaughlin, P.I., Emsbo, P., Desrochers, A., et al., Refining two kilometers of Ordovician chronostratigraphy beneath Anticosti Island utilizing integrated chemostratigraphy, Can. J. Earth Sci., 2016, vol. 53, no. 8, pp. 865–874.CrossRefGoogle Scholar
  51. Melezhik, V.A., Fallick, A.E., and Pokrovsky, B.G., Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle, Precambrian Res., 2005, vol. 137, pp. 131–165.CrossRefGoogle Scholar
  52. Menner, V.V. and Rozman, Kh.S., Ordovician stratigraphy and paleogeography, in Stratigrafiya v issledovaniyakh Geologicheskogo instituta AN SSSR (Stratigraphy in Studies at the Geological Institute, Russian Academy of Sciences, USSR), Moscow: Nauka, 1980, pp. 69–73.Google Scholar
  53. Munnecke, A., Zhang, Y., Liu, X., and Cheng, J., Stable carbon isotope stratigraphy in the Ordovician of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, vol. 307, no. 1, pp. 17–43.CrossRefGoogle Scholar
  54. Myagkova, E.I., Nikiforova, O.I., Vysotskii, A.A., and Ivanovskii, A.B., Stratigrafiya ordovikskikh i siluriiskikh otlozhenii doliny r. Moiero. Sibirskaya platforma (Stratigraphy of Ordovician and Silurian Rocks in the Moeiro Valley: Siberian Platform), Moscow: AN SSSR, 1963.Google Scholar
  55. Myagkova, E.I., Nestor, Kh.E., and Einasto, R.E., Razrez ordovika i silura reki Moiero (The Ordovician and Silurian Section of the Moeiro River), Novosibirsk: Nauka, 1977.Google Scholar
  56. Och, L.M. and Shields-Zhou, G.A., The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 2012, vol. 110, pp. 26–57.CrossRefGoogle Scholar
  57. Pokrovsky, B.G., Proterozoic–Paleozoic boundary: Isotopic anomalies of the Siberian Platform sections and global environmental changes, Lithol. Mimer. Resour., 1996, no. 4, pp. 333–347.Google Scholar
  58. Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Oxygen, strontium, and sulfur isotopic composition in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Mimer. Resour, 2006a, no. 5, pp. 450–474.CrossRefGoogle Scholar
  59. Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Oxygen, strontium, and sulfur isotopic composition in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13S values, Lithol. Mimer. Resour., 2006b, no. 6, pp. 575–587.Google Scholar
  60. Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom paleobasin, southern Middle Siberia, Lithol. Mimer. Resour., 2015, no. 2, 144–169.CrossRefGoogle Scholar
  61. Raevskaya, E., Dronov, A., Servais, T., and Wellman, C.H., Cryptospores from the Katian (Upper Ordovician) of the Tungus basin: the first evidence for early land plants from the Siberian paleocontinent, Rev. Palaeobot. Palynol., 2016, vol. 224, pp. 4–13.CrossRefGoogle Scholar
  62. Richter, F.M., Rowley, D.B., and DePaolo, D.J., Sr isotope evolution of seawater: the role of tectonics, Earth Planet. Sci. Lett., 1992, vol. 109, pp. 11–23.CrossRefGoogle Scholar
  63. Ripperdan, R.L., Stratigraphic variation in marine carbonate carbon isotope ratios, Rev. Mineral., 2001, vol. 43, pp. 637–662.CrossRefGoogle Scholar
  64. Rozman, Kh.S., The Upper Ordovician biostratigraphy and zoogeography in North Asia and North America (based on brachiopods), Tr. GIN AN SSSR, 1977, no. 305.Google Scholar
  65. Saltzman, M.R. and Thomas, E., Carbon isotope stratigraphy, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G., Eds., Boston: Elsevier, 2012, pp. 207–233.CrossRefGoogle Scholar
  66. Saltzman, M.R., Edwards, C.T., Leslie, S.A., et al., Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: implications for stratigraphic resolution, Geol. Soc. Am. Bull., 2014, vol. 126, pp. 1551–1568.CrossRefGoogle Scholar
  67. Schidlovski, M., Hayes, J.M., and Kaplan, I.R., Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen, in Earth’s Earliest Biosphere: Its Origin and Evolution, New York: Princeton Univ. Press, 1983, pp. 143–186.Google Scholar
  68. Scholle, P.A. and Arthur, M.A., Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, AAPG. Bull., 1980, vol. 64, pp. 67–87.Google Scholar
  69. Shields, G.A., Carden, G.A.F., Veizer, J., et al., Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 11, pp. 2005–2025.Google Scholar
  70. Spooner, E.T., Chapman, H.J., and Smewing, J.D., Strontium isotope contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus, Geochim. Cosmochim. Acta, 1977, vol. 41, no. 7, pp. 873–890.CrossRefGoogle Scholar
  71. Steemans, P., Le Hérissé. A., Melvin, J., et al. Origin and radiation of the earliest vascular land plants, Science, 2009, vol. 324.Google Scholar
  72. Strauss, H., The isotopic composition of sedimentary sulfur through time, Palaeogeogr. Palaeoclim. Paleoecol., 1997, vol. 132, pp. 97–118.CrossRefGoogle Scholar
  73. Taylor, H.P., Water/rock interaction and origin of H2O in granitic batholith, J. Geol. Soc. London, 1977, vol. 133, pp. 509–558.CrossRefGoogle Scholar
  74. Thompson, C.K. and Kah, L.C., Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vol. 313/314, pp. 189–214.CrossRefGoogle Scholar
  75. Tolmacheva, T.Yu. and Dronov, A.V., The lower boundary of the Upper Ordovician in the East European and Siberian platforms, in Geobiosfernye sobytiya i istoriya organicheskogo mira (Geobiospheric Events and History of Organic World: Abstracts of Papers), Bogdanov, T.N. and Krymgol’ts, N.G., Eds., St. Petersburg, 2008, pp. 174–175.Google Scholar
  76. Veizer, J. and Compston, W., 87Sr/86Sr composition of seawater during the Phanerozoic, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 1461–1484.CrossRefGoogle Scholar
  77. Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.CrossRefGoogle Scholar
  78. Vinogradov, V.I., Rol osadochnogo tsikla v geokhimii izotopov sery (Role of the Sedimentary Cycle and Geochemistry of Sulfur Isotope), Moscow: Nauka, 1980.Google Scholar
  79. Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I., et al., Isotopic signatures of the deposition and transformation of Lower Cambrian saliferous rocks in the Irkutsk amphitheater: Communication 2. Carbon and oxygen isotopic compositions in carbonates, Lithol. Mimer. Resour., 2006, no. 2, pp. 271–279.CrossRefGoogle Scholar
  80. Yudovich, Ya.E. and Ketris, M.P., Mineral’nye indikatory litogeneza (Mineral Indicators of Lithogenesis), Syktyvkar: Geoprint, 2008.Google Scholar
  81. Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., Extreme acidification of the Atlantic Ocean at the Paleocene-Eocene boundary (~55 Myr), Science, 2005, vol. 308, pp. 1611–1615.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • B. G. Pokrovsky
    • 1
    Email author
  • A. V. Zaitsev
    • 1
  • A. V. Dronov
    • 1
    • 2
  • M. I. Bujakaite
    • 1
  • A. V. Timokhin
    • 3
  • O. L. Petrov
    • 1
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia
  3. 3.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations