Lithology and Mineral Resources

, Volume 53, Issue 4, pp 263–269 | Cite as

Hazard of Submarine Slides West of the Spitsbergen Archipelago

  • A. O. MazarovichEmail author
  • E. A. Moroz
  • Yu. A. Zaraiskaya


The paper presents description of the relief, open fracture system, and submarine slides west of the Spitsbergen Archipelago in the Vestnesa Ridge area based on the data collected during cruises of the R/V Akademik Nikolaj Strakhov. Data pertaining to seismicity, as well as gas flares, chimneys, and holes are given based on the published sources. Analysis of the full information suggests the development of conditions favorable for large submarine landslides west of the Spitsbergen Archipelago.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avetisov, G.P., Verba, V.V., and Stepanova, T.V., Geodynamics of the submarine Knipovich Ridge (Norwegian–Greenland Basin), in Materialy Mezhdunarodnoi konferentsii “Geodinamika i geoekologiya” (Materials of the International Conference “Geodynamics and Geoecology”), Arkhangel’sk: RAN, 1999, p. 4.Google Scholar
  2. Bryn, P., Berg, R., Carl, F., et al., Explaining the Storegga Slide, Mar. Petrol. Geol., 2005, vol. 22, pp. 11–19.CrossRefGoogle Scholar
  3. Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., et al., Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard, Mar. Geol., 2012, vol. 332–334, pp. 189–197.CrossRefGoogle Scholar
  4. Chamov, N.P., Sokolov, S.Yu., Kostyleva, V.V., et al., Structure and composition of the sedimentary cover in the Knipovich Rift valley and Molloy Deep (Norwegian–Greenland Basin), Lithol. Miner. Resour., 2010, no. 6, pp. 532–554.CrossRefGoogle Scholar
  5. Crane, K., Doss, H., Vogt, P., et al., The role of the Spitsbergen shear zone in determining morphology, segmentation and evolution of the Knipovich Ridge, Mar. Geoph. Res., 2001, vol. 153–205.Google Scholar
  6. Dobrolyubova, K.O., Morphostructure of the Knipovich Ridge (northern segment), in Materialy Mezhdunarodnoi nauchnoi konferentsii, posvyashchennoi 100-letiyu so dnya rozhdeniya D.G. Panova (Materials of the International Scientific Conference Devoted to Centenary of D.G. Panov), Rostov-on-Don: YuNTs RAN, 2009, pp. 4–5.Google Scholar
  7. Freire, F., Gyllencreutz, R., Jafri, R.U., et al., Acoustic evidence of a submarine slide in the deepest part of the Arctic, the Molloy Hole, Geo-Mar. Lett., 2014, vol. 34, pp. 315–325.CrossRefGoogle Scholar
  8. Fryer, G.J., Watts, P., and Pratson, L.F., Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc, Mar. Geol., 2004, vol. 203, pp. 201–218.CrossRefGoogle Scholar
  9. Gusev, E.A. and Shkarubo, S.I., Anomalous structure of the Knipovich Ridge, Ross. Zh. Nauk Zemle, 2001, vol. 3, no. 2, pp. 165–182.Google Scholar
  10. IHO-IOC/GEBCO SCUFN-27. 27th SCUFN Meeting. Summary Report. 2014. Scholar
  11. Jakobsson, M., Mayer, L.A., Coakley, B., et al., The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geoph. Res. Lett., 2012, vol. 39. doi 10.1029/2012GL052219. Scholar
  12. Kokhan, A.V., Grokholsky, A.L., Abramova, A.S., et al., Structure-forming deformations on Knipovich Ridge (physical modeling), Geophysical Research Abstracts, 2010, vol. 12, p. EGU2010–7143.Google Scholar
  13. Kokhan, A.V., Grokholsky, A.L., Abramova, A.S., et al., Structure-forming deformations on Knipovich Ridge (physical modeling), Geophysical Research Abstracts, 2010, vol. 12, p. EGU2010–7143.Google Scholar
  14. Krastel, S., Wynn, R.B., Hanebuth, T.J.J., et al., Mapping of seabed morphology and shallow sediment structure of the Mauritania continental margin, Northwest Africa: some implications for geohazard potential, Norw. J. Geol., 2006, vol. 86, pp. 163–176.Google Scholar
  15. McAdoo, B.G., Pratson, L.F., and Orange, D.L., Submarine landslide geomorphology, US continental slope, Mar. Geol., 2000, vol. 169, pp. 103–136.CrossRefGoogle Scholar
  16. Moroz, E.A., Neotectonics and relief of the bottom of the northwestern margin of the Barents Sea shelf and its framing, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Moscow, 2017.Google Scholar
  17. Owen, M.J., Morphology and timing of submarine mass movements on the northwest British continental margin Matthew John (PhD thesis), Univ. College London, 2013. Scholar
  18. Peive, A.A. and Chamov, N.P., Basic tectonic features of the Knipovich Ridge (North Atlantic) and its neotectonic evolution, Geotectonics, 2008, no. 1, pp. 31–47.CrossRefGoogle Scholar
  19. Peive, A.A., Dobrolyubova, K.O., Skolotnev, S.G., et al., The structure of the Knipovich–Mohns junction (North Atlantic), Dokl. Earth Sci., 2009, vol. 426, no. 4, pp. 551–555.CrossRefGoogle Scholar
  20. Shkarubo, S.I., Geodynamic aspects of the evolution of the northern Norwegian–Greenland Basin, in 25 let na Arkticheskom shel’fe Rossii (25 Years on the Russian Arctic Shelf), St. Petersburg: VNIIOkeangeologiya, 1999.Google Scholar
  21. Sokolov, S.Yu., Tectonic evolution of the Knipovich Ridge based on the anomalous magnetic field, Dokl. Earth Sci., 2011, vol. 437, no. 3, pp. 343–348.CrossRefGoogle Scholar
  22. Sokolov, S.Yu., Abramova, A.S., Zaraiskaya, Yu.A., et al., Recent tectonics in the northern part of the Knipovich Ridge, Atlantic Ocean, Geotectonics, 2014, no. 3, pp. 175–187.CrossRefGoogle Scholar
  23. Sushchevskaya, N.M., Cherkashev, G.A., Tsekhonya, T.I., et al., Magmatism in the Mohns and Knipovich ridges-spreading zones in the Polar Atlantic, Ross. Zh. Nauk Zemle, 2000, vol. 2, no. 3, pp. 1–25.Google Scholar
  24. Thiede, J., Pfirman, S., Schenke, H-W., et al., Bathymetry of Molloy Deep: Fram Strait between Svalbard and Greenland, Mar. Geoph. Res., 1990, vol. 12, no. 3, pp. 197–214.CrossRefGoogle Scholar
  25. Twichell, D.C., Chaytor, J.D., Brink, U.S., et al., Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin, Mar. Geol., 2009, vol. 264, pp. 4–15.CrossRefGoogle Scholar
  26. Vanneste, M., Harbitz, C.B., De Blasio, F.V., et al., Hinlopen–Yermak landslide, Arctic Ocean‒Geomorphology, landslide dynamics, and Tsunami simulations, SEPM Spec. Publ., 2010, no. 95. Scholar
  27. Zaraiskaya, Yu.A., Geomorphology, seismicity, and neotectonics of the MOR in the Norwegian–Greenland Basin and Fram Strait, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Moscow, 2016.Google Scholar
  28. Zayonchek, A.V., Brekke, Kh., Sokolov, S.Yu., et al., Structure of the continent/ocean transition zone in the northwestern framing of the Barents Sea (Evidence from Cruises 24–26 of the R/V Akademik Nikolaj Strakhov in 2006–2009), in Stroenie i istoriya razvitiya litosfery. Vklad Rossii v Mezhdunarodnyi Polyarnyi God (Structure and Evolution of Lithosphere: Contribution of Russia to the International Polar Year), Moscow: Paulsen, 2010a, vol. 4.Google Scholar
  29. Zayonchek, A.V., Brekke, Kh., Sokolov, S.Yu., et al., Structure of the transition zone from the Barents Sea shelf to the Knipovich Ridge northward from Medvezhii Island (preliminary results the 26th cruise of R/V Akademik Nikolaj Strakhov), Dokl. Earth Sci., 2010b, vol. 430, no. 6, pp. 265–269.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. O. Mazarovich
    • 1
    Email author
  • E. A. Moroz
    • 1
  • Yu. A. Zaraiskaya
    • 1
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations