Lithology and Mineral Resources

, Volume 52, Issue 3, pp 173–191 | Cite as

Criteria for the detection of hydrothermal ecosystem faunas in ores of massive sulfide deposits in the Urals

  • V. V. Maslennikov
  • N. R. Ayupova
  • S. P. Maslennikova
  • A. Yu. Lein
  • A. S. Tseluiko
  • L. V. Danyushevsky
  • R. R. Large
  • V. A. Simonov


The ore-formational, ore-facies, lithological, and mineralogical-geochemical criteria are defined for the detection of hydrothermal ecosystem fauna in ores of the volcanic-hosted massive sulfide deposits in the Urals. Abundant mineralized microfauna is found mainly in massive sulfide mounds formed in the jasperous basalt (Buribai, Priorsk, Yubileinoe, Sultanov), rhyolite–basalt (Yaman-Kasy, Blyava, Komosomol’sk, Sibai, Molodezhnoe, Valentorsk), and the less common serpentinite (Dergamysh) formations of the Urals (O–D2). In the ore-formational series of the massive sulfide deposits, probability of the detection of mineralized fauna correlates inversely with the relative abundance of felsic volcanic rocks underlying the ores. This series is also marked by a gradual disappearance of colloform pyrite, marcasite, isocubanite, pyrrhotite, and pyrite pseudomorphoses after pyrrhotite; increase of the amount of bornite, fahlores, and barite; decrease of contents of Se, Te, Co, and Sn in chalcopyrite and sphalerite; and decrease of Tl, As, Sb, and Pb in the colloform pyrite. Probability of the detection of mineralized fauna in the morphogenetic series of massive sulfide deposits decreases from the weakly degraded sulfide mounds to the clastic stratiform deposits. The degradation degree of sulfide mounds and fauna preservation correlates with the attenuation of volcanic intensity, which is reflected in the abundance of sedimentary and volcanosedimentary rocks and the depletion of effusive rocks in the geological sections.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afifi, A.M., Kelly, W.C., and Essene, E.J, Phase relations among tellurides, sulfides, and oxides: I. Thermodynamical data and calculated equilibria, Econ. Geol., 1988, vol. 83, pp. 377–394.Google Scholar
  2. 2.
    Auclair, G., Fouquet, Y., and Bohn, M, Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13° N East Pacific Rise, Can. Mineral., 1995, vol. 25, pp. 577–587.Google Scholar
  3. 3.
    Avdonin, V.V., Black smoker relicts in ores of VHMS deposits, in Metallogeniya skladchatykh sistem s pozitsii tektoniki plit (Metallogeny of Fold Systems from the Position of Plate Tectonics), Yekaterinburg: UrO RAN, 1996, 148–152.Google Scholar
  4. 4.
    Ayupova, N.R., Maslennikov, V.V., Tessalina, S.G., et al., Tube fossils from gossanites of the Urals VHMS deposits, Russia: authigenic mineral assemblages and trace element distributions. Ore Geol. Rev., 2016. doi 10.1016/j.oregeorev.2016.08.003Google Scholar
  5. 5.
    Bogdanov, Yu.A., Lisitzin, A.P., Sagalevich, A.M., and Gurvich, E.G., Gidrotermal’nyi rudogenez okeanskogo dna (Hydrothermal Ore Genesis in the Ocean Floor), Moscow: Nauka, 2006.Google Scholar
  6. 6.
    Bogdanov, Yu.A., Lein, A.Yu., and Lisitzin, A.P., Polimetallicheskie rudy v riftakh Sredinno-Atlanticheskogo khrebta (15°–40° mineralogiya, geokhimiya, genezis (Polymetallic Ores in Rifts of the South Atlantic Ridge, 15°–40° N: Mineralogy, Geochemistry, and Genesis), Moscow: GEOS, 2015.Google Scholar
  7. 7.
    Boirat, J.-M. and Fouquet, Y., Découverte de tubes de vers hydrothermaux fossiles dans un amas sulfuré de l’Éocène supérieur (Barlo, ophiolite de Zambalès, Philippines), CR Acad. Sci. Paris, 1986, no. 302, pp. 941–946.Google Scholar
  8. 8.
    Butler, I.B. and Nesbitt, R.W, Trace element distributions in the chalcopyrite wall of black smoker chimney: insights from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), Earth Planet. Sci. Lett., 1999, pp. 335–345.Google Scholar
  9. 9.
    Cook, N.J., Ciobanu, C.L., Spry, P.G., and Voudouris, P., and the participants of IGCP-486. Understanding of gold-(silver)-telluride-(selenide) mineral deposits, Episodes, 2009, vol. 32, pp. 249–263.Google Scholar
  10. 10.
    Danyushevsky, L., Robinson, P., Gilbert, S., et al., Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effect, Geochemistry: Exploration, Environment, Analysis, 2011, vol. 11, pp. 51–60.Google Scholar
  11. 11.
    Dekov, V.M., Bindi, L., Burgaud, G., et al., Inorganic and biogenic As-sulfide precipitation at seafloor hydrothermal fields, Mar. Geol., 2013, vol. 342, pp. 28–38.CrossRefGoogle Scholar
  12. 12.
    De Ronde, C., Massoth, G.J., Butterfield, D.A., et al., Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand, Mineral. Dep., 2011, vol. 46, pp. 541–584.CrossRefGoogle Scholar
  13. 13.
    Desbruyeres, D. Alayse-Danet, Ohta S., et al., Deepsea hydrothermal communities in Southwestern Pacific Back arc–Arc Basins (The North Fiji and Lau Basins): composition, microdistribution and food-web, Mar. Geol., 1994, vol. 116, pp. 227–242.CrossRefGoogle Scholar
  14. 14.
    Eremin, N.I., Differentsiatsiya vulkanogennogo sul’fidnogo orudeneniya (Differentiation of the Volcanic-Hosted Massive Sulfide Deposits), Moscow: MGU, 1983.Google Scholar
  15. 15.
    Eremin, N.I., Dergachev, A.L., Sergeeva, N.E., and Pozdnyakova, N.V, Types of volcanic-hosted massive sulfide deposits, Geol. Ore Deposits, 2000, vol. 44, no. 2, pp. 160–171.Google Scholar
  16. 16.
    Eremin, N.I., Sergeeva, N.E., and Dergachev, A.L, Rare minerals in massive sulfide deposits: Typomorphic features and geochemical trends, Vestn. MGU, Ser. Geol., 2007, no. 2, pp. 85–106.Google Scholar
  17. 17.
    Fancesconi, K. and Edmons, J, Arsenic species in marine samples, Croat. Chem. Acta, 1998, vol. 71, pp. 343–359.Google Scholar
  18. 18.
    Galkin, S.V., Gidrotermal’nye soobshchestva Mirovogo okeana (Hydrothermal Communities in the World Ocean), Moscow: GEOS, 2002.Google Scholar
  19. 19.
    Gebruk, A.V., Galkin, S.V., and Lein, A.Yu., Trophic structure of hydrothermal communities, in Biologiya gidrotermal’nykh sistem (Biology of Hydrothermal Systems), Moscow: KMK Press, 2002.Google Scholar
  20. 20.
    George, L., Cook, N.J., Ciobanu, C.L., and Wade, B.P, Trace and minor elements in galena: a reconnaissance LAICP-MS study, Am. Mineral., 2015, vol. 100, pp. 548–569.CrossRefGoogle Scholar
  21. 21.
    Georgieva, M.N., Little, C.T.S., Ball, A.D., and Glover, A.G, Mineralization of Alvinella polychaete tubes at hydrothermal vents, Geobiology, 2015, vol. 13, pp. 152–169.CrossRefGoogle Scholar
  22. 22.
    Hannington, M.D., Herzig, P.M., Scott, S.D., et al., Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges, Mar. Geol., 1991, vol. 101, pp. 217–248.CrossRefGoogle Scholar
  23. 23.
    Haymon, R.M., Koski, R.A., and Abrams, M.J, Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite, Geology, 1989, vol. 17, pp. 531–535.CrossRefGoogle Scholar
  24. 24.
    Herrington, R.J., Maslennikov, V.V., Spiro, B., et al., Ancient vent chimneys structures in the Silurian massive sulphides of the Urals, Modern Ocean Floor Proc. Geol. Records, 1998, vol. 148, pp. 241–257.Google Scholar
  25. 25.
    Herrington, R.J., Armstrong, R.N., Zaykov, V.V., et al., Massive sulfide deposits in the South Urals: geological setting within the framework of the Uralide orogen, in Mountain Building in the Uralides: Pangea to the Present (Geophys. Monogr.), Brown et al., Eds., 2002, no. 132, pp. 155–182.CrossRefGoogle Scholar
  26. 26.
    Ivanov, S.N., Opyt izucheniya geologii i mineralogii kolchedannykh mestorozhdenii (Experience of Studying the Geology and Mineralogy of Massive Sulfide Deposits), Sverdlovsk: UF ANSSSR,1947, vol. 2 (The Sibai Deposit).Google Scholar
  27. 27.
    Ivanov, S.N, Discussion of some recent issues of the formation of the Uralian VHMS deposits: Issues of geology and origin of massive sulfide deposits in the Urals, in Trudy Gorno-geol. in-ta (Trans. Min.-Geol. Inst.), Sverdlovsk, 1959, no. 43, pp. 7–78.Google Scholar
  28. 28.
    Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), Moscow: Nedra,1996, vol. 3.Google Scholar
  29. 29.
    Ivanov, S.N., Kuritsyna, G.A., and Khodalevich, N.A, New data on the genesis of massive sulfide deposits in the Urals, in Geneticheskie problemy rud (Genetic Problems of Ores), Moscow: Geoltekhizdat, 1960, pp. 100–105.Google Scholar
  30. 30.
    Kontar, E.S., Geologo-promyshlennye tipy mestorozhdenii medi, tsinka, svintsa na Urale (geologicheskie usloviya razmeshcheniya, istoriya formirovaniya, perspektivy) (Geological–Industrial Types of Copper, Zinc, and Lead Deposits in the Urals: Geological Localization Conditions, History of Formation, and Perspectives), Yekaterinburg: UGGU, 2013.Google Scholar
  31. 31.
    Kontar, E.S. and Libarova, L.E., Metallogeniya medi, tsinka, svintsa na Urale (Metallogeny of Copper, Zinc, and Lead in the Urals), Yekaterinburg: Uralgeolkom, 1997.Google Scholar
  32. 32.
    Korovko, A.V., Grabezhov, A.I., and Dvoeglazov, D.A, The metasomatic halo of the Saf’yanov Zn–Cu deposit, Central Urals, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 3, pp. 692–695.Google Scholar
  33. 33.
    Kuznetsov, A.P., Maslennikov, V.V., Zaikov, V.V., and Sobetskii, V.A, Fauna in the hydrothermal sulfide mounds in the Middle Devonian Ural paleocean, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 6, pp. 1477–1481.Google Scholar
  34. 34.
    Kuznetsov, A.P., Maslennikov, V.V., and Zaikov, V.V, The hydrothermal-zone fauna in the Silurian paleocean in the South Urals, Izv. Akad. Nauk, Ser. Biol., 1993, no. 4, pp. 525–534.Google Scholar
  35. 35.
    Large, R.R., Danyushevsky, L., Hillit, H., et al., Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits, Econ. Geol., 2009, vol. 104, pp. 635–668.CrossRefGoogle Scholar
  36. 36.
    Lein, A.Yu., Carbon, Sulfur, and Nitrogen Isotopes in Hydrothermal Systems, in Biologiya gidrotermal’nykh sistem (Biology of Hydrothermal Systems), Moscow: KMK Press, 2002.Google Scholar
  37. 37.
    Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsikl metana v okeane (Biogeochemical Cycle of Methane in the Ocean), Moscow: Nauka, 2009.Google Scholar
  38. 38.
    Lein, A.Yu., Maslennikov, V.V., Maslennikova, S.P., et al., Sulfur and Carbon Isotopes in the Black Smoker Hydrothermal Vent Ecosystems of the Ural Paleoocean, Geochem. Int., 2004, no. 7, pp. 668–681.Google Scholar
  39. 39.
    Lisitzin, A.P., Lukashin, V.N., Gordeev, V.V., et al., Hydrological and geochemical anomalies associated with hydrothermal activity in SWPacific marginal and back-arc basins, Mar. Geol., 1997, vol. 142, pp. 7–45.CrossRefGoogle Scholar
  40. 40.
    Little, C.T.S. and Thorseth, I.H, Hydrothermal vent microbial communities: a fossil perspective, Cahiers Biol. Mar., 2002, vol. 43, pp. 317–319.Google Scholar
  41. 41.
    Little, C.T.S., Herrington, R., and Maslennikov, V.V., et al. Silurian high-temperature hydrothermal vent community from the southern Urals, Russia, Nature, 1997, vol. 385, no. 9, pp. 3–6.Google Scholar
  42. 42.
    Little, C.T.S., Herrington, R.J., Haymon, R.M., and Danelian, T, Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains, California, Geology, 1999a, vol. 27, no. 2, pp. 167–170.Google Scholar
  43. 43.
    Little, C.T.S., Maslennikov, V.V., Morris, N.J., and Gubanov, A.P, Two Palaeozoic hydrothermal vent communities from the Southern Ural Mountains, Russia, Palaeontology, 1999b, vol. 42, pp. 1043–1078.CrossRefGoogle Scholar
  44. 44.
    Maginn, E.J., Little, C.T.S., Herrington, R.J., and Mills, R.A, Sulphide mineralisation in the deep sea, hydrothermal vent polychaete, Alvinella pompejana: implications for fossil preservation, Mar. Geol., 2002, vol. 181, pp. 337–356.Google Scholar
  45. 45.
    Malakhov, A.A. and Denisova, E.A, The sulfur isotope composition in pyritized forrsils from the VHMS copper deposits in the South Urals, Dokl. Akad. Nauk SSSR, 1974, vol. 218, no. 4, pp. 934–937.Google Scholar
  46. 46.
    Maslennikov, V.V., Litologicheskii kontrol' mednokolchedannykh rud (na primere Sibaiskogo i Oktyabr’skogo mestorozhdenii Urala) (Lithological Control of Massive Sulfide Copper Ores: Evidence from the Sibai and Oktyabr Deposits in the Urals), Sverdlovsk: UrO ANSSSR, 1991.Google Scholar
  47. 47.
    Maslennikov, V.V., Sedimentogenez, gal’miroliz i ekologiya kolchedanonosnykh paleogidrotermal’nykh polei (na primere Yuzhnogo Urala) (Sedimentogenesis, Halmyrolysis, and Ecology of the Paleohydrothermal Massive Sulfide Fields: Evidence from the South Urals), Miass: Geotur, 1999.Google Scholar
  48. 48.
    Maslennikov, V.V., Litogenez i kolchedanoobrazovanie (Lithogenesis and Massive Sulfide Formation), Miass: IMin UrO RAN, 2006.Google Scholar
  49. 49.
    Maslennikov, V.V, Morphogenetic types of VHMS deposits as indicators of the regime of volcanism, Litosfera, 2012, no. 5, pp. 96–113.Google Scholar
  50. 50.
    Maslennikov, V.V. and Zaikov, V.V., Metod rudno-fatsial’nogo analiza v geologii kolchedannykh mestorozhdenii (Uchebnoe posobie) (The Method of Ore-Facies Analysis in the Geology of Massive Sulfide Deposits: A Manual), Chelyabinsk: YuUrGU, 2006.Google Scholar
  51. 51.
    Maslennikov, V.V., Maslennikova, S.P., Large, R.R., and Danyushevsky, L.V, Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS), Econ. Geol., 2009, vol. 104, pp. 1111–1141.Google Scholar
  52. 52.
    Maslennikov, V.V., Lein, A.Yu., Maslennikova, S.P., and Bogdanov, Yu.A., Phanerozoic black smokers as indicators of the composition of ore-hosting complexes, Litosfera, 2010, no. 3, pp. 153–162.Google Scholar
  53. 53.
    Maslennikov, V.V., Ayupova, N.R., Herrington, R.J., et al., Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals, Ore Geol. Rev, 2012, vol. 47, pp. 5–41.CrossRefGoogle Scholar
  54. 54.
    Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia, Mineral. Petrol., 2013, vol. 107, no. 1, pp. 67–99.CrossRefGoogle Scholar
  55. 55.
    Maslennikov, V.V., Ayupova, N.R., Maslennikova, S.P., et al., Toksichnye elementy v kolchedanoobrazuyushchikh sistemakh (Toxic Elements in Massive Sulfide-Forming Systems), Yekaterinburg: RIO UrO RAN, 2014.Google Scholar
  56. 56.
    Maslennikov, V.V, Maslennikova, S.P., Tret’yakov, G.A., et al., Fahlores in the Paleozoic black smokers from VHMS deposits in the Urals and Rudnyi Altai, Mineralogiya, 2015, no. 4, pp. 53–78.Google Scholar
  57. 57.
    Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers, Ore Geol. Rev., 2016. doi doi 10.1016/j.oregeorev.2016.09.012Google Scholar
  58. 58.
    Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (na primere Urala) (Sulfide Chimneys in the Paleozoic Black Smokers: Evidence from the Urals), Yekaterinburg: UrO RAN, 2007.Google Scholar
  59. 59.
    Melekestseva, I.Yu., Zaykov, V.V., Nimis, P., et al., Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic-ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs, Ore Geol. Rev., 2013, vol. 52, pp. 18–37.Google Scholar
  60. 60.
    Mironov, A.N., Gebruk, A.V., and Moskalev, L.I., Geography of hydrothermal communities and obligatory hydrothermal taxa, in Biologiya gidrotermal’nykh sistem (Biology of Hydrothermal Systems), Moscow: KMK Press, 2002.Google Scholar
  61. 61.
    Moskalev, L.I., Discovery and study of hydrotherms in cold hydrogen sulfide and methane seepages, in Biologiya gidrotermal’nykh sictem (Biology of Hydrothermal Systems), Moscow: KMK Press, 2002.Google Scholar
  62. 62.
    Nakajima, T., Hirayama, H., and Natori, H., Fossil foraminifera replaced by sphalerite in the Shakanai Kuroko deposits, Hokuroko district, Japan, Min. Geol., vol. 35, no. 6, pp. 397–405.Google Scholar
  63. 63.
    Nimis, P., Tessalina, S.G., Omenetto, P., and Catherine, L, Phyllosilicate minerals in the hydrothermal mafic-ultramafic- hosted massive-sulfide deposit of Ivanovka (southern Urals): Comparison with modern ocean seafloor analogues, Miner. Petrol., 2004, vol. 147, no. 3, pp. 363–383.CrossRefGoogle Scholar
  64. 64.
    Oudin, E. and Constantinou, G, Black smoker chimney fragments in Cyprus sulphide deposits, Nature, 1984, vol. 308, pp. 349–353.CrossRefGoogle Scholar
  65. 65.
    Perner, M., Hansen, M., Seifert, R., et al., Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deepsea hydrothermal vent environments, Geobiology, 2013, vol. 11, no. 4, pp. 340–355.Google Scholar
  66. 66.
    Prokin, V.A. and Buslaev, F.P, Massive copper-zinc sulphide deposits in the Urals, Ore Geol. Rev., 1999, vol. 14, pp. 1–69.CrossRefGoogle Scholar
  67. 67.
    Prokin, V.A., Bogoyavlenskaya, O.V., and Maslennikov, V.V, Occurrence conditions of fauna in VHMS copper deposits in the Urals, Geol. Rudn. Mestorozhd., 1985, no. 1, pp. 114–117.Google Scholar
  68. 68.
    Prokin, V.A., Buslaev, F.P., and Nasedkin, A.P, Types of massive sulfide deposits in the Urals, Mineral. Dep., 1998, vol. 34, pp. 121–126.CrossRefGoogle Scholar
  69. 69.
    Prokin, V.A., Seravkin, I.B., and Vinogradov, A.M, Geological localization conditions and perspectives of the discovery of large VHMS copper deposits in the Urals, Litosfera, 2011, no. 6, pp. 123–133.Google Scholar
  70. 70.
    Pshenichnyi, G.N., Tekstury i struktury rud mestorozhdenii kolchedannoi formatsii Yuzhnogo Urala (Structures and Textures of Ores in Deposits of the Massive Sulfide Formation in the South Urals), Moscow: Nauka, 1984.Google Scholar
  71. 71.
    Revan, M.K., Genc, Y., Maslennikov, V.V., and Danyushevsky, L.V, Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey), Ore Geol. Rev., 2014, vol. 63, pp. 129–149.CrossRefGoogle Scholar
  72. 72.
    Safina, N.P., Maslennikov, V.V., Maslennikova, S.P., et al., Banded Sulfide–Magnetite Ores of Mauk Copper Massive Sulfide Deposit, Central Urals: Composition and Genesis, Geol. Ore Deposits, 2015, vol. 57, no. 3, pp. 197–212.Google Scholar
  73. 73.
    Scott, S.D, Small chimneys from Japanese Kuroko deposits, in Geosci. Can. (Seminars on Seafloor Hydrothermal Systems, Goldie, R. and Botrill, T.J., Eds.), 1981, vol. 8, pp. 103–104.Google Scholar
  74. 74.
    Seravkin, I.B., Metallogeniya Yuzhnogo Urala i Tsentral’nogo Kazakhstana (Metallogeny of the South Urals and Central Kazakhstan), Ufa: Gilem, 2010.Google Scholar
  75. 75.
    Shcheglova-Borodina, O.N, Determination of fauna in massive sulfides of Sibai deposit in the southern Urals, in Tr. Gorno-geol. in-ta UFAN SSSR (Trans. Min.-Geol. Inst., Ural Branch, Academy of Sciences of the USSR), Sverdlovsk, 1956, pp. 169–171.Google Scholar
  76. 76.
    Shikazono, N. and Kusakabe, M, Mineralogical characteristics and formation mechanism of sulfate-sulfide chimneys from Kuroko area, Mariana trough and Mid-Ocean ridges, Res. Geol., 1999, no. 20, pp. 1–11.Google Scholar
  77. 77.
    Shimazaki, H. and Horikoshi, E, Black ore chimney from the Hanaoka Kuroko deposits, Japan, Min. Geol., 1990, vol. 40, no. 5, pp. 313–321.Google Scholar
  78. 78.
    Shpanskaya, A.Yu., Maslennikov, V.V., and Littl, K.T.S, Vestimentiferan tubes from thr Early Silurian and Middle Devonian Hydrothermal-Zone Biotas in the Ural Paleocean, Paleontol. Zh., 1999, no. 3, pp. 12–16.Google Scholar
  79. 79.
    Thiel, V., Hügler, M, Blümel, M., et al., Widespread occurrence of two fixation pathways in tubeworm endosibionts: lessons from hydrothermal vent associated tubeworms from Mediterranean Sea, Front. Microbiol., 2012, vol. 3, pp. 1–20.CrossRefGoogle Scholar
  80. 80.
    Tunnicliffe, V, The biology of hydrothermal vents: ecology and evolution, Oceanol. Mar. Biol. Ann. Rev., 1991, vol. 29, pp. 319–407.Google Scholar
  81. 81.
    Van Dover, C.L., The Ecology of Deep-Sea Hydrothermal Vents, Princeton: Univ. Press, 2000.Google Scholar
  82. 82.
    Vikentyev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Formation Conditions and Metamorphism of Massive Sulfide Ores), Moscow: Nauchn. Mir, 2004.Google Scholar
  83. 83.
    Vikentyev, I.V, Invisible and microscopic gold in pyrite: new data for volcanogenic massive sulfide ores of the Urals, Geol. Ore Deposits, 2015a, vol. 57, no. 4, pp. 237–265.CrossRefGoogle Scholar
  84. 84.
    Vikentyev, I.V, Invisible and microscopic gold in pyrite: new data for volcanogenic massive sulfide ores of the Urals, Proc. 13th Biennial SGA Meeting, Nancy, 2015b, pp. 2113–2116.Google Scholar
  85. 85.
    Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S., and Voster, C, Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in situ LA-ICP-MS study, Geochim. Cosmochim. Acta, 2015, vol. 159, pp. 16–41.CrossRefGoogle Scholar
  86. 86.
    Zaikov, V.V., Vulkanizm i sul’fidnye kholmy paleookeanicheskikh okrain (Volcanism and Sulfide Mounds at Paleoceanic Margins), Moscow: Nauka, 1991.Google Scholar
  87. 87.
    Zaikov, V.V., Vulkanizm i sul’fidnye kholmy paleookeanicheskikh okrain (na primere kolchedanonosnykh zon Urala i Sibiri) (Volcanism and Sulfide Mounds at Paleoceanic Margins: Evidence from Massive Sulfide Zones in the Urals and Siberia), Moscow: Nauka, 2006.Google Scholar
  88. 88.
    Zaikov, V.V., Shadlun, T.N., Maslennikov, V.V., and Bortnikov, N.S, The Yaman-Kasy sulfide deposit: An ancient Black Smoker in the Ural Paleocean, Geol. Rudn. Mestorozhd., 1995, vol. 37, no. 6, pp. 511–529.Google Scholar
  89. 89.
    Zaikov, V.V., Maslennikov, V.V., Zaikova, E.V., and Kherrington, R., Rudno-formatsionnyi i rudno-fatsial’nyi analiz kolchedannykh mestorozhdenii Ural’skogo paleookeana (The Ore-Formational and Ore-Facies Analysis of Massive Sulfide Deposits in the Ural Paleocean), Miass: IMin UrO RAN, 2001.Google Scholar
  90. 90.
    Zhabin, A.G, Peculiarities of ore bodies of the hydrothermal-sedimentary ore deposition facies, Geol. Rudn. Mestorozhd., 1977, no. 1, pp. 51–69.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. V. Maslennikov
    • 1
  • N. R. Ayupova
    • 1
  • S. P. Maslennikova
    • 1
  • A. Yu. Lein
    • 2
  • A. S. Tseluiko
    • 3
  • L. V. Danyushevsky
    • 4
  • R. R. Large
    • 4
  • V. A. Simonov
    • 5
  1. 1.Institute of Mineralogy, Ural Branch, Russian Academy of SciencesIlmen Nature ReserveMiass, Chelyabinsk oblastRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.South Ural UniversityChelyabinskRussia
  4. 4.CODESUniversity of TasmaniaTasmaniaAustralia
  5. 5.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations