Lithology and Mineral Resources

, Volume 49, Issue 2, pp 117–137 | Cite as

Cenozoic glaciation of Antarctica and sedimentation in the Southern Ocean

Article

Abstract

Literature pertaining to history of the Cenozoic glaciation in Antarctica and its influence on sedimentation in marginal areas of the continent and deep-water domains of the Southern Ocean are reviewed. Original data obtained by G.L. Leichenkov on seismostratigraphy of the East Antarctica margin are also used. Particular attention is paid to the history of silica accumulation, ice-rafted material deposition, and formation of contourites. The results make it possible to define the following main stages of Antarctic glaciation in the Cenozoic: (1) middle-late Eocene; (2) Oligocene; (3) early Miocene; (4) middle Miocene; (5) late Miocene-early Pliocene; and (6) late Pliocene-Holocene.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.B., Warny, S., Askin, R.A., et al., Progressive Cenozoic cooling and the demise of Antarctica’s last refugium, Geology, 2010. doi: 10.1073/pnas.1014885108/-DCSupplementalGoogle Scholar
  2. Barett, P.J., Florindo, F., and Cooper, A.K., Introduction to “Antarctic” climate evolution: View from the margin, Palaeogeogr., Palaeoclimat., Palaeoecol., 2006, vol. 231, pp. 1–8.CrossRefGoogle Scholar
  3. Barker, G.M., Filippelli, G.F., Martin, E.E., and Scher, H.D., Onset and role of the Antarctic Circumpolar Current, Deep-Sea Res., 2007, Part II, vol. 54, pp. 2388–2398.CrossRefGoogle Scholar
  4. Becquey, S. and Gersonde, R., A 0.55-Ma paleotemperature record from the subantarctic zone: Implications for Antarctic Circumpolar Current development, Paleoceanography, 2003, vol. 18, no. 1, p. 1014. doi: 10.1029/2000PA000576/CrossRefGoogle Scholar
  5. Chappellaz, J., Past climate dynamics from ice cores: Where we are? Where we go?, Abstracts of SCAR/IASC IPY Open Scientific Conference, St. Petersburg, 2008, K/O03.Google Scholar
  6. Conrad, C.P. and Lithgow-Bertelloni, C., Faster seafloor spreading and lithosphere production during the mid-Cenozoic, Geology, 2007, vol. 35, no. 1, pp. 29–32.CrossRefGoogle Scholar
  7. Cortese, G., Gersonde, R., Hillenbrand, C.-D., and Kuhn, G., Opal sedimentation shifts in the World Ocean over the last 15 Myr, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 509–527.CrossRefGoogle Scholar
  8. Dawber, C.F. and Tripati, A.K., Constraints on glaciation in the middle Eocene (46–37 Ma) from ocean drilling program ODP Site 1209 in the tropical Pacific Ocean, Paleoceanography, 2011, vol. 26, p. A2208. doi: 10.1029/2010PA002037CrossRefGoogle Scholar
  9. De Boer, B., Van de Wal, R.S.W., Bintanj, R., et al., Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records, Ann. Glaciol., 2010, vol. 51, no. (55), pp. 23–33.CrossRefGoogle Scholar
  10. DeConto, R.M., Pollard, D., Wilson, P.A., et al., Thresholds for Cenozoic bipolar glaciation, Nature, 2008, vol. 421, pp. 245–249. doi: 10.1038/nature 01290CrossRefGoogle Scholar
  11. Del Carlo, P., Panter, K.S., Basett, K., et al., The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound): Local Pleistocene volcanic sources, paleoenvironmental implications and subsidence in the southern Victoria Land Basin, Global Planet. Change, 2009. doi: 10.101016/j.gloplacha.2009.09.002Google Scholar
  12. Diekmann, B., Fütterer, D.K., Grobe, H., et al., Terrigenous sediment supply in the polar to temperate South Atlantic: Land-ocean links of environmental changes during the late Quaternary in The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems, Wefer, G., Mulitza, S., and Ratmeyer, Y., Eds., Berlin: Springer, 2003, pp. 375–399.CrossRefGoogle Scholar
  13. Diekmann, B., Kuhn, G., Gersonde, R., and Mackensen, A., Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: Evidence from biogenic and terrigenous depositional patterns at ODP Site 1090, Global Planet. Change, 2004, vol. 40, pp. 295–313.CrossRefGoogle Scholar
  14. Dowdeswell, J.A., Ó Cofaigh, C., Noormets, R. et al., A major trough-mouth fan on the continental margin of the Bellingshausen Sea, West Antarctica: The Belgica fan, Mar. Geol., 2008, vol. 252, pp. 129–140.CrossRefGoogle Scholar
  15. Eagles, G., Livermore, R.A., Fairhead, J.D., and Morris, P., Tectonic evolution of the West Scotia Sea, J. Geophys. Res., 2005, vol. 110, p. B02401. doi: 1029/2004JB003154Google Scholar
  16. Ehrmann, W.U. and Mackensen, A., Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time, Palaeogeogr., Palaeoclimat., Palaeoecol., 1992, vol. 93, pp. 85–112.CrossRefGoogle Scholar
  17. Ehrmann, W.U., Hambrey, M.J., Baldauf, J.G., et al., History of Antarctic glaciation: An Indian Ocean perspective, AGU, Geophys. Monogr., 1990, vol. 70, pp. 423–446.Google Scholar
  18. Eldrett, J.C., Harding, I.C., Wilson, P.A., et al., Continental ice in Greenland during the Eocene and Oligocene, Nature, 2007. doi: 10.1038/nature 05591Google Scholar
  19. Embry, A.F., Mesozoic history of the Arctic Islands, in Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Trettin, H.P., Ed., Toronto: Geol. Surv. Canada, 1991, pp. 371–433.Google Scholar
  20. Escutia, C., Brinkhuis, H., Dunbar, R., et al., Unveiling climate and ice sheet history from drilling in high-latitude margins: IODP Expedition 318, Abstracts of IPY Meeting, Oslo, 2010, no. LM 9.2-1.3.Google Scholar
  21. Fielding, Ch.R., Whittaker, J., Henrys, S.A., et al., Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history, Palaeogeogr., Palaeoclimat., Palaeoecol., 2007. doi: 10.1016/j.palaeo.2007.08.016Google Scholar
  22. Fielding, Ch.R., Harwood, D.M., Winter, D.M., and Francis, J.E., Neogene stratigraphy of Taylore Valley, Transantarctic Mountains, Antarctica: Evidence for climate dynamism and a vegetated Early Pliocene coastline of McMurdo Sound, Global Planet. Change, 2010. doi: 10.1016/j.gloplach.2010.09.003Google Scholar
  23. Florindo, F., Cooper, A.K., and O’Brien, P.E., Introduction to “Antarctic Cenozoic paleoenvironments: Geologic record and models”, Palaeogeogr., Palaeoclimat., Palaeoecol., 2003, vol. 198, pp. 1–9.CrossRefGoogle Scholar
  24. Florindo, F., Harwood, D.M., and Wilson, G.S., Introduction to “Long-term changes in Southern high-latitude ice sheets and climate, the Cenozoic history, Global Planet. Change, 2005, vol. 45, nos. 1–3, pp. 1–14.CrossRefGoogle Scholar
  25. Flower, B., Cenozoic deep-sea temperatures and polar glaciation: The oxygen isotope record, Terra Antarct. Rep., 1999, vol. 3, pp. 27–42.Google Scholar
  26. Francis, J.E. and Haywood, A., Arctic and Antarctic forests and climate in the Eocene greenhouse world 50 million years ago, Abstracts of SCAR/IASC IPY Open Scientific Conference, St. Petersburg, 2008, p. S35/O07.Google Scholar
  27. Gersonde, R., Crosta, X., Abelmann, A., and Armand, L., Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum-a circum-Antarctic view based on siliceous microfossil records, Quart. Sci. Rev., 2005, vol. 24, pp. 869–896.CrossRefGoogle Scholar
  28. Hambrey, M.J., Glasser, N.F., McKelvey, B.C., et al., Cenozoic landscape evolution of an East Antarctic oasis (Radok Lake area, northern Prince Charles Mountains), and its implications for the glacial and climatic history of Antarctica, Quart. Sci. Rev., 2007, vol. 26, pp. 598–626.CrossRefGoogle Scholar
  29. Harwood, D.M., Florindo, F., Levy, R.H., and Talarico, F., Early and Middle Miocene Antarctic climate and ice sheet variability: ANDRILL SMS project results, Abstracts of IPY Oslo Sci. Conf., Oslo, 2010. pp. LM9.2–1.1.Google Scholar
  30. Hayes, D.E. and Frakes, L.A., General synthesis, Deep Sea Drilling Project Leg 28, Init. Repts. DSDP, Washington: U.S. Govt. Print. Off., 1975, vol. 28, pp. 919–940.Google Scholar
  31. Hernándes-Molina, F.J., Larter, R.D., Rebesco, M., and Maldonado, A., Miocene reversal of bottom water flow along the Pacific margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail, Mar. Geol., 2006, vol. 228, pp. 93–116.CrossRefGoogle Scholar
  32. Hillenbrand, C.-D. and Fütterer, D.K., Neogene to Quaternary deposition of opal on the continental rise west of Antarctic Peninsula, Proc. ODP, Sci. Res., College Station, 2001, vol. 178.Google Scholar
  33. Hodell, D.A., Gersonde, R., and Blum, P., Leg 117 synthesis: Insights into Southern Ocean paleoceanography on tectonic to millennial scales, Proc. ODP, Sci. Res. 177, Gersonde, R., Hodell, D.A., and Blum, P., Eds., College Station: Ocean Drill. Progr., 2003, pp. 1–54.Google Scholar
  34. Ingólfsson, ó., Quaternary glacial and climate history of Antarctica, in Quaternary Glaciations-Extent and Chronology, Ehlers, J. and Gibbard, P.L, Eds., Amsterdam: Elsevier, 2004, part III, pp. 3–43.Google Scholar
  35. Ivany, L.C., Van Simaeys, S., Domack, E.W., and Samson, S.D., Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula, Geology, 2006, vol. 34, no. 5, pp. 377–380.CrossRefGoogle Scholar
  36. John, St.K., Cenozoic ice-rafting history of the central Arctic Ocean: terrigenous sands on the Lomonosov Ridge, Paleoceanography, 2008, vol. 23, PAI 505. doi: 10.1029/2007PA001483CrossRefGoogle Scholar
  37. Junttila, J., Ruikka, M., and Strand, K., Clay-mineral assemblages in high-resolution Plio-Pleistocene interval at ODP Site 1165, Prydz Bay, Antarctica, Global Planet. Change, 2005, vol. 45, pp. 151–163.CrossRefGoogle Scholar
  38. Kennett, J.P., Marine Geology, New Jersey: Englewood Cliffs, 1982. Translated under the title Morskaya geologiya, Mir, Moscow, 1987, vol. 1.Google Scholar
  39. Kennett, J.P. and Barker, P.F., Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean-drilling perspective, Proc. ODP. Sci. Res., College Station, 1990, vol. 113.Google Scholar
  40. Krajewski, K.P., Tatur, A., Mozer, A., et al., Cenozoic climate evolution in the northern Antarctic Peninsula region: Geochronology and paleoenvironments of the Eocene-Miocene succession on King George Island, Abstracts of IPY Meeting, Oslo, 2010, no. PS2, P. 40.Google Scholar
  41. Kuvaas, B., Kristoffersen, Y., Guseva, J., et al., Input of glaciomarine sediments along the East Antarctic continental margin; depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40° W to 80° E, Mar. Geophys. Res., 2004, vol. 25, pp. 247–263.CrossRefGoogle Scholar
  42. Latimer, J.C. and Philippeli, G.M., Terrigenous input and paleoproductivity in the Southern Ocean, Paleoceanography, 2001, vol. 16, no. 6, pp. 627–643.CrossRefGoogle Scholar
  43. Leichenkov, G.L., Guseva, U.B., and Gandyukhin, V.V., Cenozoic environmental changes along the East Antarctic continental margin inferred from regional seismic stratigraphy, US Geol. Surv. and US National Acad. Short Res. Pap.005, 2007. doi: 10.3133/2007-1047.srp005Google Scholar
  44. Leichenkov, G.L., Guseva, Yu.B., Gandyukhin, V.V., et al., Tectonic evolution of the Earth’s crust and formation of the sedimentary cover in the Antarctic sector of the Indian Ocean (Commonwealth Sea, Davis Sea, and Kerguelen Plateau), in Stroenie i istoriya razvitiya litosfery (Structure and History of the Lithosphere Evolution), Moscow: Paulsen Edition, 2010, pp. 9–38.Google Scholar
  45. Levitan, M.A., Biogenic silica as a source of matter for the formation of cherts in the Pacific sedimentary cover, Extended Abstract of PhD (Geol.-Miner.) Dissertation, Moscow: MGU, 1975.Google Scholar
  46. Levitan, M.A., History of silica accumulation in the Indian Ocean, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1987, vol. 62, no. 4, pp. 30–41.Google Scholar
  47. Levitan, M.A., Paleookeanologiya Indiiskogo okeana v melu-neogene (Paleoceanography of the Indian Ocean in the Cretaceous-Neogene), Moscow: Nauka, 1992.Google Scholar
  48. Levitan, M.A., Terrigenous matter fluxes into the North Atlantic in the Cretaceous-Neogene and factors of the evolution of terrigenous process, Okeanologiya, 1994, vol. 34, no. 3, pp. 433–438.Google Scholar
  49. Levitan, M.A. and Bogdanov, Yu.A., History of the biogenic silica accumulation, in Geologicheskaya istoriya okeana (Geological History of the Ocean), Monin, A.S. and Lisitzin, A.P., Eds., Moscow: Nauka, 1980, pp. 231–252.Google Scholar
  50. Levitan, M.A. and Dietrikh, P.G., Bottom sediments in the Atlantic Ocean, in Otchet o 43 reise nis “Akademik Kurchatov” (Report of Cruise 43 of the R/V Akademik Kurchatov), Moscow: Arkhiv IO AN SSSR, 198Google Scholar
  51. Levitan, M.A. and Stein, R., History of sedimentation rate in the Arctic Ocean during the last 130 ka, in Fundamental’nye problemy kvartera: itogi izucheniya i osnovnye napravleniya dal’neishikh issledovanii (Fundamental Problems of the Quaternary: Results of the Study and Main Lines of Further Investigations), Moscow: GEOS, 2007, pp. 224–226.Google Scholar
  52. Levitan, M.A., Lavrushin, Yu.A., and Stein, R., Ocherki istorii sedimentatsii v Severnom Ledovitom okeane i moryakh Subarktiki v techenie poslednikh 130 tys. let (History of Sedimentation in the Arctic Ocean and Subarctic Seas during the last 130 ka), Moscow: GEOS, 2007.Google Scholar
  53. Levitan, M.A., Roshchina, I.A., and Tolmacheva, A.V., Geochemical features of sediments on the continental slope of the Weddel Sea and their paleoceanological interpretation, Lithol. Miner. Resour., 2008, no. 2, pp. 118–131.Google Scholar
  54. Levitan, M.A., Girin, Yu.P., Luksha, V.L., et al., Modern sedimentation system of Lake Untersee (East Antarctica), Geochem. Int., 2011, no. 5, pp. 475–495.Google Scholar
  55. Levitan, M.A., Balukhovskii, A.N., Antonova, T.A., and Gel’vi, T.N., Quantitative parameters of the Pleistocene pelagic sedimentation in the Pacific, Geochem. Int., 2013, no. 5, pp. 387–395.Google Scholar
  56. Lewis, R., Marchant, D.R., Kowalewski, D.E., et al., The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and fresh water discharge to the Southern Ocean, Geology, 2006, vol. 34, no. 7, pp. 513–516.CrossRefGoogle Scholar
  57. Lisiecki, L.E. and Raymo, M.E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20(PA1). doi: 10.1029/2004PA001071Google Scholar
  58. Lisitzin, A.P., Main regularities in the distribution of Recent siliceous sediments and their link with climatic zonality, in Geokhimiya kremnezema (Geochemistry of Silica), Moscow: AN SSSR, 1966, pp. 90–191.Google Scholar
  59. Lisitzin, A.P., Protsessy okeanskoi sedimentatsii (Processes of Oceanic Sedimentation), Moscow: Nauka, 1978.Google Scholar
  60. Lisitzin, A.P., Sea-ice and iceberg sedimentation in the ocean, Heidelberg, Berlin: Springer, 2002.CrossRefGoogle Scholar
  61. Lyle, M., Gibbs, S., Moore, T.C., and Rea, D.K., Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific, Geology, 2007, vol. 35, no. 8, pp. 691–694.CrossRefGoogle Scholar
  62. Maldonado, A., Barnolas, A., Bohoyo, F., et al., Contourite deposits in the Central Scotia Sea: The importance of the Antarctic Circumpolar Current and the Weddell Gyre flows, Palaeogeogr., Palaeoclimat., Palaeoecol., 2003, vol. 198, pp. 187–221.CrossRefGoogle Scholar
  63. Maldonado, A., Barnolas, A., Bohoyo, F., et al., Miocene to Recent contourite drifts development in the northern Weddell Sea, Global Planet. Change, 2005, vol. 45, pp. 99–129.CrossRefGoogle Scholar
  64. Miller, K.G., Barrera, E., Olsson, R.K., et al., Does ice drive early Maastrichtian eustasy?, Geology, 1999, vol. 27, pp. 783–786.CrossRefGoogle Scholar
  65. Miller, K.G., Kominz, M.A., Browning, J.V., et al., The Phanerozoic record of global sea level change, Science, 2005, vol. 310, no. 5752, pp. 1293–1298.CrossRefGoogle Scholar
  66. Monien, D., Kuhn, G., von Eynatten, H., and Talarico, F.M., Geochemical provenance analysis of fine-grained sediment revealing Late Miocene to recent paleo-environmental changes in the Western Ross sea, Antarctica, Global Planet. Change, 2010. doi:10.1016/j.gloplacha.2010.05.001Google Scholar
  67. Naish, T.R., The variability of Pliocene Antarctic Ice Sheets and implications for global sea-level, Abstracts of IPY Scientific Conference, Oslo, 2010, LM9.2–1.4.Google Scholar
  68. Nikolaev, N.I., Noveishaya tektonika SSSR (Neotectonics of the Soviet Union), Moscow: AN SSSR, 1949.Google Scholar
  69. Passchier, S. and Krissek, L.A., Oligocene-Miocene Antarctic continental weathering record and paleoclimatic implications, Cape Roberts drilling project, Ross Sea, Antarctica, Palaeogeogr., Palaeoclimat., Palaeoecol., 2008. doi: 10.1016/j.palaeo.2007.08.012Google Scholar
  70. Pekar, S.F. and Christie-Blick, N., Resolving apparent conflicts between oceanographic and Antarctic climate records for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma), Palaeogeogr., Palaeoclimat., Palaeoecol., 2007. doi: 10.1016/j.palaeo.2007.08.019Google Scholar
  71. Polyak, L., Alley, R.B., Andrews, J.T., et al., History of sea ice in the Arctic, Quat. Sci. Rev., 2010, vol. 29, pp. 1757–1778.CrossRefGoogle Scholar
  72. Popov, S.V., Leichenkov, G.L., Masolov, V.N., et al., Thickness of ice sheet and subglacial relief of East Antarctica, in Stroenie i istoriya razvitiya litosfery (Structure and History of the Lithosphere Evolution), Moscow: Paulsen Edition, 2010, pp. 39–48.Google Scholar
  73. Pound, M.J., Haywood, A.M., Saltzmann, U., et al., A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation reconstruction, Palaeogeogr., Palaeoclimat., Palaeoecol., 2011, vol. 30, nos. 1–4, pp. 29–45.CrossRefGoogle Scholar
  74. Pusz, A.E., Thunell, R.C., and Miller, K.G., Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition, Paleoceanography, 2011, vol. 26, p. A2205. doi: 10.1029/2010PA001950CrossRefGoogle Scholar
  75. Raine, J.L., Ashworth, A.C., Askin, R., et al., Cenozoic vegetation history and climate, Ross Sea region-An update, Abstracts of SCAR/IASC IPY Open Scientific Conference, St. Petersburg, 2008, p. 1.5/O08.Google Scholar
  76. Ronov, A.B., Evolution of sedimentation in the Earth’s history, in Evolyutsiya osadochnogo protsessa v okeanakh i na kontinentakh (Evolution of Sedimentary Process in Oceans and on Continents), Moscow: Nauka, 1983, pp. 49–73.Google Scholar
  77. Rudolph, M., Benthic foraminiferal assemblages used as proxy to reconstruct Late Quaternary migrations of the fronts of the Antarctic Circumpolar Current in the South Atlantic, Ber. Polarforsch., 2006, no. 522.Google Scholar
  78. Saltzmann, U., Haywood, A.M., Lunt, D.J., et al., A new global biome reconstruction and data-model comparison for the Middle Pliocene, Global Ecol. Biogeogr., 2008, vol. 17, no. 3, pp. 432–447.CrossRefGoogle Scholar
  79. Sicre, M.A., Massé, G., Jacob, J., et al., Decadal variability in the sub-polar Arctic Ocean over the last 2000 years, Abstracts of IPY Meeting, Oslo, 2010, no. LM110.2-1.1.Google Scholar
  80. Smellie, J.L., McArthur, J.M., McIntosh, W.C., and Esser, R., Late Neogene events in the James Ross Iceland region, northern Antarctic Peninsula, dated by Ar/Ar and Sr-isotope stratigraphy, Palaeogeogr., Palaeoclimat., Palaeoecol., 2006, vol. 242, pp. 169–187.CrossRefGoogle Scholar
  81. Solli, K., Kuvaas, B., Kristoffersen, Y., et al., Seismic morphology and distribution of inferred glaciomarine deposits along the East Antarctic continental margin, 20–60°E, Mar. Geol., 2007, vol. 237, pp. 207–223.CrossRefGoogle Scholar
  82. Stein, R., Arctic ocean sediments: processes, proxies, and paleoenvironment, Amsterdam: Elsevier, 2008.Google Scholar
  83. Stein, R., The great challenges in Arctic Ocean paleoceanography, IOP Conf. Series: Earth and Environmental Science, 2011, vol. 14, pp. 1–7.Google Scholar
  84. Taviani, M. and Beu, A.G., The paleoclimatic significance of Cenozoic marine microfossil assemblages from Cape Roberts Project drillholes, McMurdo Sound, Victoria Land Basin, East Antarctica, Palaeogeogr., Palaeoclimat., Palaeoecol., 2003, vol. 198, pp. 131–143.CrossRefGoogle Scholar
  85. Teitler, L., Warnke, D., Venz, K.A., et al., Determination of Antarctic ice sheet stability over the last ∼500 ka through a study of iceberg-rafted debris, Paleoceanography, 2010, vol. 25, PA1202. doi: 10.1029/2008PA001691CrossRefGoogle Scholar
  86. Thiede, J. and Ehrmann, W.U., Late Mesozoic and Cenozoic sediment flux to the central North Atlantic, in North Atlantic Paleoceanography, Summerhayes, C.P. and Shackleton, N.J., Eds., Geol. Soc. Am. Spec. Publ., 1986, no. 21, pp. 3–15.Google Scholar
  87. Trifonov, V.G., Neotektonika Evrazii (Neotectonics of Eurasia), Moscow: Nauchnyi Mir, 1999.Google Scholar
  88. Van Andel, T.H., Heath, C.R., and Moore, T.C., Cenozoic tectonics, sedimentation and paleoceanography of the central Equatorial Pacific, Mem. Geol. Soc. Am., 1975, vol. 143, pp. 1–65.CrossRefGoogle Scholar
  89. Verkulich, S.R., Last Glacial Maximum and deglaciation in the marginal zone of Antarctica, Extended Abstract of DSc (Geogr.) Dissertation, Moscow: IG RAN, 2011.Google Scholar
  90. Villa, G., Persico, D., Bonci, M.C., et al., Biostratigraphic characterization and Quaternary microfossil palaeoecology in sediment drifts west of Antarctic Peninsula — Implications for cyclic glacial-interglacial deposition, Palaeogeogr., Palaeoclimat., Palaeoecol., 2003, vol. 198, pp. 237–263.CrossRefGoogle Scholar
  91. Walter, H., Die Vegetation der Erde, Jena: Fischer, 1973. Translated under the title Rastitel’nost zemnogo shara, Moscow: Progress, 1974, vol. 2.Google Scholar
  92. Wefer, G., Mulitza, S., and Ratmeyer, Y., The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems, Berlin: Springer, 2003.Google Scholar
  93. Whittaker, J.M. and Müller, R.D., Seismic stratigraphy of the Adare Trough area, Antarctica, Mar. Geol., 2006, vol. 230, pp. 179–197.CrossRefGoogle Scholar
  94. Wilson, D.S., Jamieson, S.S.R., Barrett, P.J., et al., Antarctic topography at the Eocene-Oligocene boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011. doi: 10.1016/j.palaeo.20117.05.028Google Scholar
  95. Wise, S.W., Breza, J.R., Harwood, D.M., et al., Paleogene glacial history of Antarctica in light of Leg 120 drilling results, ODP Sci. Res., College Station, 1992, vol. 120, pp. 1001–1030.Google Scholar
  96. Zachos, J., Pagani, M., Sloan, L., et al., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, vol. 292, no. 5517, pp. 686–693.CrossRefGoogle Scholar
  97. Zakharov, V.A., Boreal climate in the Mesozoic, Priroda, 2010, no. 4, pp. 37–42.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research Institute of Geology and Mineral Resources of the World OceanSt. PetersburgRussia

Personalised recommendations