Lithology and Mineral Resources

, Volume 49, Issue 1, pp 103–116 | Cite as

Clay minerals as indicators of late quaternary sedimentation constraints in the Mendeleev Rise, Amerasian Basin, Arctic Ocean

  • A. A. Krylov
  • R. Stein
  • L. A. Ermakova


The results of study of six cores taken from different morphostructural zones in the Mendeleev Ridge area are discussed. Average contents of minerals of the illite group, chlorite, kaolinite, and smectite are about 60, 21, 12, and 5%, respectively. It was found that fluctuations of minerals along the section correlate with variations in sedimentation constraints in the Late Quaternary. Peaks of kaolinite usually coincide with increased contents of the sand fraction, probably, due to its delivery by icebergs. In contrast, illite shows good correlation with the pelite fraction, testifying to its transport mainly by ices and currents. Minerals of the chlorite and smectite groups in the studied cores are less informative.


Clay Mineral Kaolinite Chlorite Arctic Ocean Marine Isotope Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreeva, I.A., Basov, V.A., Kupriyanova, N.V., and Shilov, V.V., Age and formation conditions of bottom sediments in the Mendeleev Rise area (Arctic Ocean), in Tr. NIIGA-VNI-IOkeangeologiya, 2007, vol. 211, pp. 131–152.Google Scholar
  2. Backman, J., Jakobsson, M., Lovlie, R., et al., Is the central Arctic Ocean a sediment starved basin?, Quater. Sci. Rev., 2004, vol. 23, pp. 1435–1454.CrossRefGoogle Scholar
  3. Belov, N.A. and Lapina, N.N., Donnye otlozheniya Arkticheskogo basseina (Bottom Sediments of the Arctic Basin), Leningrad: Morsk. Transp., 1961.Google Scholar
  4. Biscaye, P.E., Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Am. Spec. Bull., 1965, no. 76, pp. 803–832.Google Scholar
  5. Bischof, J. and Darby, D., Mid-to Late Pleistocene ice drift in the western Arctic Ocean: Evidence for a different circulation in the past, Science, vol. 277, pp. 74–78.Google Scholar
  6. Bjork, G., Jakobsson, M., Rudels, B., et al., Bathymetry and deep-water exchange across the central Lomonosov Ridge at 88–89° N, Deep-Sea Res. I, 2007, vol. 54, pp. 1197–1208.CrossRefGoogle Scholar
  7. Bruvoll, V., Kristoffersen, Y., Coakley, B.J., and Hopper, J., Hemipelagic deposits on the Mendeleev and Alpha submarine ridges in the Arctic Ocean: Acoustic stratigraphy, depositional environment and inter-ridge correlation calibrated by the ACEX results, Mar. Geophys. Res., 2010, vol. 31, pp. 149–171.CrossRefGoogle Scholar
  8. Bruvoll, V., Kristoffersen, Y., Coakley, B.J., et al., The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean, Tectonophysics, 2012, vol. 514–517, pp. 123–145.CrossRefGoogle Scholar
  9. Clark, D.L., Whitman, R.R., Morgan, K.A., and Mackey, S.D., Stratigraphy and Glacial-Marine Sedimentation of the Amerasian Basin, Central Arctic Ocean, GSA Spec. Pap., 1980.Google Scholar
  10. Dalrymple, R.W. and Maass, O.C., Clay mineralogy of late Cenozoic sediments in the Cesar cores, Alpha ridge, central Arctic Ocean, Can. J. Earth Sci., 1987, vol. 24, pp. 1562–1569.CrossRefGoogle Scholar
  11. Darby, D.A., Kaolinite and other clay minerals in Arctic Ocean sediments, J. Sediment. Petrol., 1975, vol. 45, pp. 272–279.Google Scholar
  12. Darby, D.A., Polyak, L., and Bauch, H.A., Past glacial and interglacial conditions in the Arctic Ocean and marginal sea—A review, Progr. Oceanogr., 2006, vol. 71, pp. 129–144.CrossRefGoogle Scholar
  13. Darby, D.A., Myers, W.B., Jakobsson, M., and Rigor, I., Modern dirty ice characteristics and sources: The role of anchor ice, J. Geophys. Res., 2011, vol. 116, p. C09008.CrossRefGoogle Scholar
  14. Gorbunova, Z.N., Highly dispersed minerals in sediments of the Kara Sea, Oceanology, 1997, vol. 37, no. 5, pp. 763–769.Google Scholar
  15. Grantz, A., May, S.D., Taylor, P.T., and Lawyer, L.A., Canada Basin, in The Geology of North America: The Arctic Ocean Region, Grantz, A., Johnson, G.L., and Sweeney, J.F., Eds., Colorado: Geol. Soc. Am., 1990, pp. 379–402.Google Scholar
  16. Gusev, E.A., Maksimov, F.E., Novikhina, E.S., et al., Issue of the stratigraphy of bottom sediments on the Mendeleev Rise (Arctic Ocean), Vestn. St. Petersb. Univ., Ser. 7: Geol. Geogr., 2012, issue 4, pp. 102–115.Google Scholar
  17. Ivanov, G.I., Wahsner, M., Ponomarenko, T.V., et al., Distribution of clay minerals in surface bottom sediments in the St. Anna Trough, Rep. Polar Res., 1999, no. 342, pp. 172–182.Google Scholar
  18. Jakobsson, M., Lovlie, R., Al-Hanbali, H., et al., Manganese and color cycles in Arctic Ocean sediment constrain Pleistocene chronology, Geology, 2000, vol. 28, pp. 23–26.CrossRefGoogle Scholar
  19. Jokat, W., Seismic investigations along the western sector of Alpha ridge, central Arctic Ocean, Geophys. J. Int., 2003, vol. 152, pp. 185–201.CrossRefGoogle Scholar
  20. Kaban’kov, V.Ya., Andreeva, I.A., Ivanov, V.N., and Petrova, V.I., Geotectonic nature of the central Arctic morphostructure system and geological significance of bottom sediments for its identification, Geotectonics, 2004, no. 6, pp. 31–42.Google Scholar
  21. Kaban’kov, V.Ya., Andreeva, I.A., Krupskaya, V.V., et al., New data on the composition and origin of bottom sediments in the southern Mendeleev Rise (Arctic Ocean), Dokl. Earth Sci., 2008, vol. 419, pp. 641–643.Google Scholar
  22. Kalinenko, V.V., Clay minerals in sediments of the Arctic seas, Lithol. Miner. Resour., 2001, no. 4, pp. 413–424.Google Scholar
  23. Kim, B.I. and Slobodin, V.Ya., Main stages of the evolution of East Arctic shelves of Russia and Canadian Arctic in the Paleogene and Neogene, in Geologiya skladchatogo obramleniya Ameraziiskogo subbasseina (Geology of the Folded Framing of the Amerasian Subbasin), St. Petersburg: Sevmorgeologiya, 1991, pp. 104–116.Google Scholar
  24. Kosheleva, V.A. and Yashin, D.S., Donnye osadki Arkticheskikh morei Rossii (Bottom Sediments in the Arctic Seas of Russia), St. Petersburg: VNIIOkeangeologiya, 1999.Google Scholar
  25. Krupskaya, V.V., Krylov, A.A., and Sokolov, V.N., Clay minerals as indicators of sedimentation conditions at the Cretaceous-Paleogene-Eocene boundaries on the Lomonosov Ridge (Arctic Ocean), Probl. Arkt. Antarkt., 2011, no. 2, pp. 23–35.Google Scholar
  26. Krylov, A.A., Andreeva, I.A., Vogt, C., et al., A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean, Paleoceanography, 2008, vol. 23.Google Scholar
  27. Krylov, A.A., Waiel, D., Sapega, V.F., et al., Clay minerals as indicator of depositional environment of upper Quaternary sediments in the St. Anna Trough (Kara Sea), Oceanology, 2008, vol. 48, pp. 85–94.CrossRefGoogle Scholar
  28. Krylov, A.A., Shilov, V.V., Andreeva, I.A., and Mirolyubova, E.S., Stratigraphy and depositional environment of upper Quaternary sediments on the northern Mendeleev Rise (Amerasian Basin of the Arctic Ocean), Probl. Arkt. Antarkt., 2011, no. 2, pp. 7–22.Google Scholar
  29. Lapina, N.N., Metodika izucheniya veshchestvennogo sostava donnykh otlozhenii (na primere Severnogo Ledovitogo okeana) (Method for Studying the Lithology of Bottom Sediments: Evidence from the Arctic ocean), Leningrad: NIIGA, 1977.Google Scholar
  30. Levitan, M.A., Wahsner, M., Nürnberg, D., and Shelekhova, E.S., Average composition of clay mineral assemblages in the surface layer of bottom sediments in the Arctic Ocean, Dokl. Akad. Nauk, 1995, vol. 344, no. 3, pp. 364–366.Google Scholar
  31. Lisitsyn, A.P., Ledovaya sedimentatsiya v Mirovom okeane (Glacial Sedimentation in the World Ocean), Moscow: Nauka, 1994.Google Scholar
  32. Lisitsyn, A.P., Unresolved problems in the Arctic oceanology, in Opyt sistemnykh okeanologicheskikh issledovanii v Arktike (Experience of Oceanographic System Studies in the Arctic), Lisitsyn, A.P. et al., Eds., Moscow: Nauchn. Mir, 2001, pp. 31–75.Google Scholar
  33. Logvinenko, N.V., Petrografiya osadochnykh porod (Petrography of Sedimentary Rocks), Moscow: Vyssh. Shkola, 1984.Google Scholar
  34. Moran, K., Backman, J., Brinkhuis, H., et al., The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 2006, vol. 441, pp. 601–606.CrossRefGoogle Scholar
  35. Naidu, A.S. and Mowatt, T.C., Sources and dispersal pattern of clay minerals in surface sediments from the continental-shelf areas off Alaska, Geol. Soc. Am. Bull., 1983, vol. 94, pp. 841–854.CrossRefGoogle Scholar
  36. Naidu, A.S., Creager, J.S., and Mowatt, T.C., Clay mineral dispersal patterns in the North Bering and Chukchi seas, Mar. Geol., 1982, vol. 47, pp. 1–15.CrossRefGoogle Scholar
  37. Norgaard-Pedersen, N., Spielhagen, R.F., Thiede, J., and Kassens, H., Central Arctic surface ocean environment during the past 80000 years, Paleoceanography, 1998, vol. 13, pp. 193–204.CrossRefGoogle Scholar
  38. Nürnberg, D., Wollenburg, I., Dethleff, D., et al., Sediments in Arctic Sea ice: implications for entrainment, transport and release, Mar. Geol., 1994, vol. 119, pp. 185–214.CrossRefGoogle Scholar
  39. Nürnberg, D., Levitan, M.A., Pavlidis, J.A., and Shelekhova, E.S., Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas, Geol. Rundsch., 1995, vol. 84, pp. 665–682.CrossRefGoogle Scholar
  40. Ortiz, J.D., Polyak, L., Grebmeier, J.M., et al., Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis, Global Planet. Change, 2009, vol. 68, pp. 73–84.CrossRefGoogle Scholar
  41. Petrova, V.I., Batova, G.I., Kursheva, A.V., and Litvinenko, I.V., Geochemistry of organic matter in bottom sediments on the central rises of the Arctic Ocean, Geol. Geofiz., 2010, vol. 51, pp. 113–125.Google Scholar
  42. Petschik, R., Kuhn, G., and Gingele, F., Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography, Mar. Geol., 1996, vol. 130, pp. 203–229.CrossRefGoogle Scholar
  43. Phillips, R.L. and Grantz, A., Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic, Mar. Geol., 2001, vol. 172, pp. 91–115.CrossRefGoogle Scholar
  44. Polyak, L., Curry, W.B., Darby, D.A., et al., Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge, Palaeogeogr., Palaeoclimat., Palaeoecol., 2004, vol. 203, pp. 73–93.CrossRefGoogle Scholar
  45. Polyak, L., Bischof, J., Ortiz, J.D., et al., Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean, Global Planet. Change, 2009, vol. 68, pp. 5–17.CrossRefGoogle Scholar
  46. Schoster, F., Behrends, M., Muller, C., et al., Modern river discharge and pathways of supplied material in the Eurasian Arctic Ocean: Evidence from mineral assemblages and major and minor element distribution, Int. J. Earth Sci., 2000, vol. 89, pp. 486–495.CrossRefGoogle Scholar
  47. Schubert, C. and Stein, R., Lipid distribution in surface sediments from the eastern central Arctic Ocean, Mar. Geology, 1997, vol. 138, pp. 11–25.CrossRefGoogle Scholar
  48. Shelekhova, E.S., Nürnberg, D., Vasner, M., et al., Distribution of clay minerals in the surface layer of sediments in the southwestern Kara Sea, Okeanologiya, 1995, vol. 35, pp. 435–439.Google Scholar
  49. Slobodin, V.Ya., Kim, B.I., Stepanova, G.V., and Kovalenko, F.Ya., Differentiation of the Aion borehole section based on the biostratigraphic data, Stratigrafiya i paleontologiya mezo-kainozoya Sovetskoi Arktiki (Stratigraphy and Paleontology of the Meso-Cenozoic in the Soviet Arctic), Leningrad: Sevmorgeologiya, 1990, pp. 43–58.Google Scholar
  50. Spielhagen, R.-F., Baumann, K.H., Erlenkeuser, H., et al., Arctic ocean deep-sea record of northern eurasian ice sheet history, Quat. Sci. Rev., 2004, vol. 23, pp. 1455–1483.CrossRefGoogle Scholar
  51. Stein, R., Arctic Ocean sediments. Processes, proxies, and paleoenvironment, Amsterdam: Elsevier, 2008.Google Scholar
  52. Stein, R., Grobe, H., and Wahsner, M., Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments, Mar. Geol., 1994, vol. 119, pp. 269–285.CrossRefGoogle Scholar
  53. Viscosi-Shirley, C., Mammone, K., Pisias, N., and Dymond, J., Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting, Cont. Shelf Res., 2003, vol. 23, pp. 1175–1200.CrossRefGoogle Scholar
  54. Vogt, C., Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes, Rep. Polar Res., 1997, no. 251, p. 309.Google Scholar
  55. Vogt, C. and Knies, J., Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation: The clay mineral group smectite perspective, Mar. Geol., 2008, vol. 250, pp. 211–222.CrossRefGoogle Scholar
  56. Vogt, C. and Knies, J., Sediment pathways in the western Barents Sea inferred from clay mineral assemblages in surface sediments, Norw. J. Geol., 2009, vol. 89, pp. 41–55.Google Scholar
  57. Wahsner, M., Ivanov, G., and Tarasov, G., Marine geological investigation of surface sediments in the Franz-Josef Land area and the St. Anna Trough, Rep. Polar Res., 1996, no. 212, pp. 172–184.Google Scholar
  58. Wahsner, M., Muller, C., Stein, R., et al., Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways—a synthesis, Boreas, 1999, vol. 28, no. 1, pp. 215–233.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.VNIIOkeangeologiyaSt. PetersburgRussia
  2. 2.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations