Mixed-layer corrensite-chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift)

  • V. A. Drits
  • T. A. Ivanovskaya
  • B. A. Sakharov
  • B. B. Zviagina
  • N. V. Gor’kova
  • E. V. Pokrovskaya
  • A. T. Savichev


The paper presents the first detailed mineralogical, structural, and crystal-chemical characteristics of the mixed-layer corrensite-chlorites from the glauconitic sandy-clayey rocks that make up the bottom (0.10 m) of a basal member (1.50 m) of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Like the overlying mudstones (1.40 m) in the basal member, these rocks are generally transformed up to the deep catagenesis level and included in a thick dolomite sequence. In mudstones represented by the dioctahedral micas, the corrensite-type minerals are observed as traces.

The real structure of the studied mixed-layer phases represents an alternation of corrensite (Cor) and chlorite (Ch) layers with a distinct tendency of segregation (R = 1) and ratio of layers Cor: Ch = 0.60: 0.40 in the well-crystallized corrensite-type minerals and 0.70: 0.30 in the poorly crystallized varieties.

Among these mineral formations, the high-Mg (hereafter, Mg) and magnesian-ferruginous (Mg-Fe) mixedlayer corrensite-chlorites prevail, whereas the high-Fe (Fe) and ferruginous-magnesian (Fe-Mg) varieties are rare. Synthesis of the corrensite-type microcrystals of different sizes took place after the formation of glauconite globules, probably, at the reductive stage of late diagenesis.

Two possible structural mechanisms are proposed for the formation of the mixed-layer corrensite-chlorites, preference being given to the two-stage version. The first stage is marked by the formation of corrensite proper with a structure periodic along the layer normal; the second stage, by the successive replacement of smectite interlayers by the brucite-type sheets, probably, due to the further evaporitization that promotes the replacement of a part of smectite interlayers in the corrensite component of the structure and the stabilization of the newly formed brucite-type sheets.


Chlorite Basal Reflection Crystal Chemical Formula Cement Mass Coherent Scattering Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. April, R.H., Clay Petrology of the Upper Triassic/Lower Jurassic Terrestrial Strata of the Newark Supergroup, Connecticut Valley, U.S.A, Sed. Geol., 1981a, vol. 29, pp. 283–307.CrossRefGoogle Scholar
  2. April, R.H., Trioctahedral Smectite and Interstratified Chlorite-Smectite in Jurassic Strata of the Connecticut Valley, Clays Clay Miner., 1981b, vol. 29, pp. 31–39.CrossRefGoogle Scholar
  3. Bailey, S.W., Nomenclature for Regular Interstratifications, Am. Mineral., 1982, vol. 67, pp. 394–398.Google Scholar
  4. Beaufort, D. and Meunier, A., A Petrographic Study of Phyllic Alteration Superimposed on Potassic Alteration: The Sibert Porphyry Deposit (Rhine, France), Econ. Geol., 1983, vol. 78, pp. 1514–1527.CrossRefGoogle Scholar
  5. Beaufort, D. and Meunier, A., Saponite, Corrensite and Chlorite/Saponite Mixed-Layered Minerals and Saponite in the Sancerre-Couy Deep Drill Hole (France), Clay Miner., 1994, vol. 29, pp. 47–61.CrossRefGoogle Scholar
  6. Beaufort, D., Baronnet, A., Lanson, B., and Meunier, A., Corrensite: A Single Phase or a Mixed-Layer Phyllosilicate in the Saponite-to-Chlorite Conversion Series? A Case Study of Sancerre-Couy Deep Drill Hole (France), Am. Mineral., 1997, vol. 82, pp. 109–124.Google Scholar
  7. Bodine, M.F. and Madsen, B.M., Mixed-Layer Chlorite-Smectites from a Pennsylvanian Evaporate Cycle, Grand Country, Utah, in Proc. of the International Clay Conference. Denver: Clay Minerals Society, 1987, vol. 8, pp. 85–93.Google Scholar
  8. Chang, H.K., Mackenzie, F.T., and Schoonmaker, J., Comparison Between the Diagenesis of Dioctahedral and Trioctahedral Smectite, Brasilian Offshore Basins, Clays Clay Miner., 1986, vol. 34, pp. 407–423.CrossRefGoogle Scholar
  9. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: smektity, smeshanosloinye obrazovaniya (Clay Minerals: Smectites and Mixed-Layer Phases), Moscow: Nauka, 1990.Google Scholar
  10. Drits, V.A. and Sakharov, B.A., Rentgenostrukturnyi analiz smeshanosloinykh mineralov (The X-Ray Diffraction Analysis of Mixed-Layer Minerals), Moscow: Nauka, 1976.Google Scholar
  11. Drits V.A. and Tchoubar C. X-Ray Diffraction by Disordered Lamellar Structures, Heldenberg: Springer, 1990.Google Scholar
  12. Drits, V.A., Kameneva, M.Yu., Sakharov, B.A., et al., Problemy opredeleniya real’noi struktury glaukonitov i rodstvennykh tonkodispersnykh fillosilikatov (Problems of the Determination of the Real Structure of Glauconites and Related Finely Dispersed Phyllosilicates), Novosibirsk: Nauka, 1993.Google Scholar
  13. Drits, V.A., Srodon, J., and Eberl, D.D., XRD Measurements of Mean Crystallite Thickness of Illite and Illite/Smectite: Reappraisal of the Kubler Index and the Scherrer Equation, Clays Clay Miner., 1997, vol. 45, pp. 461–475.CrossRefGoogle Scholar
  14. Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., et al., Priroda strukturno-kristallokhimicheskoi neodnorodnosti glaukonita s povyshennym soderzhaniem (Rifei, Anabarskoe podnyatie) (Nature of Structural and Crystal-Chemical Heterogeneities in High-Mg Glauconite (Riphean, Anabar Uplift), Lithol. Miner. Resour., 2010, no. 6, pp. 605–626.Google Scholar
  15. Iijima, A., Geology of Natural Zeolites and Zeolites Rocks, Pure. Appl. Chem., 1980, vol. 52, pp. 1115–2130.CrossRefGoogle Scholar
  16. Inoue, A., Conversion of Smectite to Chlorite by Hydrothermal Diagenetic Alterations, Hokuroku Kuroko Mineralization Area, Northeast Japan, Proc. of the International Clay Conference, Denver. Clay Minerals Society, 1987, vol. 8, pp. 158–164.Google Scholar
  17. Inoue, A. and Utada, M., Smectite-to-Chlorite Transformation in Thermally Metamorphosed Volcanoclastic Rocks in the Kamikita Area, Northern Honshu, Japan, Am. Mineral., 1991, vol. 76, pp. 628–640.Google Scholar
  18. Kossovskaya, A.G. and Drits, V.A., Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok (Crystal Chemistry of Dioctahedral Micas, Chlorites, and Corrensites as Indicators of Geological Settings), Moscow: Nauka, 1975.Google Scholar
  19. Kübler, B., La Corrensite Indicateur Possible de Milieux de Sedimentation et du Degree de Transformation d’Un Sediment, Bull. Cent. Rech. PAU-SNPA, 1973, vol. 7, pp. 543–556.Google Scholar
  20. Lindgreen, H., Drits, V.A., Sakharov, B.A., et al., The Structure and Diagenetic Transformation of Illite-Smectite and Chlorite-Smectite from North Sea Cretaceous-Tertiary Chalk, Clay Miner., 2002, vol. 37, pp. 429–450.CrossRefGoogle Scholar
  21. Lindgreen, H., Drits, V.A., Jakobsen, F.C., and Sakharov, B.A., Clay Mineralogy of the Central North Sea Upper Cretaceous-Tertiary Chalk and Formation of Clay Rich Layers, Clays Clay Miner., 2008, vol. 56, pp. 693–710.CrossRefGoogle Scholar
  22. Lippmann, F., Clay Minerals from the Rt Member of the Triassic near Guttingen, Germany, J. Sedim. Petrol., 1956, vol. 26, pp. 125–139.Google Scholar
  23. Lucas, J., La Transformation des Mineraux Argileux dans la Sedimentation: Etude sur les Argiles du Trias, Mem. Serv. Carte Geol. Als. Loraine, 1962, no. 20, p. 202.Google Scholar
  24. Mehegan, J.M., Robinson, P.T., and Delaney, J.R., Secondary Mineralization and Hydrothermal Alteration in the Reydarfjordur Drill Cole East Iceland, J. Geophys. Res., 1982, vol. 87, pp. 6511–6524.CrossRefGoogle Scholar
  25. Mering, J., L’Interference des Rayons X dans les Systems a Stratification Desordonnee, Acta Crystallogr., 1949, vol. 2, pp. 371–377.CrossRefGoogle Scholar
  26. Meunier, A., Inoue, A., and Beaufort, D., Chemographic Analysis of Trioctahedral Smectite-to-Chlorite Conversion Series from the Ohyu Caldera, Japan, Clays Clay Miner., 1991, vol. 39, pp. 409–415.CrossRefGoogle Scholar
  27. Moore, D.M. and Reynolds, R.C., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford: University Press, 1989.Google Scholar
  28. Reynolds, R.C., Interstratified Clay Minerals, in Crystal Structures of the Clay Minerals and Their X-Ray Identification, Brindley, G.W. and Brown, G., Eds., London: Mineral. Soc., 1980, pp. 249–303.Google Scholar
  29. Reynolds, R.C., NEWMOD, a Computer Program for the Calculation of One-Dimensional Diffraction Patterns for Mixed-Layered Clays, Hanover: New Hampshire, 1985.Google Scholar
  30. Reynolds, R.C., The Lorentz-Polarization Factor and Preferred Orientation in Oriented Clay Aggregates, Clays Clay Miner., 1986, vol. 34, pp. 359–367.CrossRefGoogle Scholar
  31. Reynolds, R.C., Mixed-Layer Chlorite Minerals, Mineralogical Society of America Reviews in Mineralogy, 1988, vol. 19, pp. 601–609.Google Scholar
  32. Roberson, H.E., Random Mixed-Layer Chlorite-Smectite: Does It Exist?, Clay Miner. Soc., 1988, pp. 25–27.Google Scholar
  33. Roberson, H.E. and Bevins, R.E., Mafic Phyllosilicates in Low-Grade Metabasites: Characterization Using Deconvolution Analysis, Clay Miner., 1994, vol. 29, pp. 223–237.CrossRefGoogle Scholar
  34. Ryan, P.C. and Hillier, S., Berthierine/Chamosite, Corrensite, and Discrete Chlorite from Evolved Verdine and Evaporate-Associated Facies in the Jurassic Sundance Formation, Wyoming, Am. Mineral., 2002, vol. 87, pp. 1607–1615.Google Scholar
  35. Sakharov, B.A., Lindgreen, H., Salyn, A.L., and Drits, V.A., Determination of Illite-Smectite Structures Using Multispecimen X-Ray Diffraction Profile Fitting, Clays Clay Miner., 1999, vol. 47, pp. 555–566.CrossRefGoogle Scholar
  36. Schultz, L.G., Clay Minerals in the Triassic Rocks of the Colorado Plateau, U.S. Geol. Surv. Bull., 1963, vol. 1147 C, pp. 1–71.Google Scholar
  37. Segonzac, D.G., Les Mineraux Argileux dans la Diagenese-Passage au Metamorphisme, Mem. Serv. Carte Geol. Als Lorr, 1969, vol. 29, pp. 1–320.Google Scholar
  38. Sergeev, V.N., Okremnennye mikrofossilii dokembriya: priroda, klassifikatsiya i biostratigraficheskoe znachenie (Silicification of Precambrian Microfossils: Nature, Classification, and Biostratigraphic Implication), Moscow: GEOS, 2006.Google Scholar
  39. Shau, Y.H., Peacor, D.R., and Essence, E.J., Corrensite and Mixed-Layer Chlorite/Corrensite in Metabasalts from Northern Taiwan: TEM/AEM, EMPA, XRD and Optical Studies, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 123–142.CrossRefGoogle Scholar
  40. Shutov, V.D., Epigenesis Zone in Terrigenous Rocks of the Sedimentary Cover, Izv. Akad. Nauk SSSR, Ser. Geol., 1962, no. 3, pp. 30–44.Google Scholar
  41. Sokolova, T.N., Autigennoe silikatnoe mineraloobrazovanie raznykh stadii osoloneniya(Authigenic Silicate Mineral Formation at Different Stages of Salinization), Moscow: Nauka, 1982.Google Scholar
  42. Sugimori, H., Iwatsuki, T., and Murakami, T., Chlorite and Biotite Weathering, Fe2+-Rich Corrensite Formation, and Fe Behavior Under Low PO2 Conditions and Their Implication for Precambrian Weathering, Am. Mineral., 2008, vol. 93, pp. 1080–1089.CrossRefGoogle Scholar
  43. Whitney, G. and Northop, H.R., Vanadium Chlorite from a Sandstone Host Vanadium-Uranium Deposit, Henry Basin, Utah, Clays Clay Miner., 1986, vol. 34, pp. 488–495.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Drits
    • 1
  • T. A. Ivanovskaya
    • 1
  • B. A. Sakharov
    • 1
  • B. B. Zviagina
    • 1
  • N. V. Gor’kova
    • 1
  • E. V. Pokrovskaya
    • 1
  • A. T. Savichev
    • 1
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations