Advertisement

Mobility of cerium in the 2.8-2.1 Ga exogenous environments of the Baltic Shield: Data on weathering profiles and sedimentary carbonates

  • N. A. Alfimova
  • S. B. Felitsyn
  • V. A. Matrenichev
Article

Abstract

The absence of Ce anomaly and significant positive correlation between Ce and Fe in the weathering profiles and sedimentary carbonate rocks of the Baltic Shield with an age of 2.8–2.1 Ga indicate that Fe3+ was the main form of Fe migration in the Archean-Paleoproterozoic exogenous environments in the Baltic Shield. The Ce distribution was mainly controlled by hydrogen index rather than redox conditions.

Keywords

Sedimentary Carbonate Baltic Shield Granite Porphyry Hydrogen Index Dengying Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfimova, N.A. and Matrenichev, V.A., Continental Weathering Crust in the Early Precambrian: Peculiarities of Mineral Transformations and Composition of Supergene Solutions, Litol. Polezn. Iskop., 2006, no. 6, pp. 518–529 [Lithol. Miner. Resour. (Engl. Transl.), 2006, no. 6, pp. 495–205].Google Scholar
  2. Alfimova, N.A., Early Precambrian Weathering Crusts of Karelia: Geological Structure, Chemical Composition, and Formation Conditions, Extended Abstract of PhD (Geol.-Miner.) Dissertation, 2007.Google Scholar
  3. Arestova, N.A., Nature of Basalts in the Archean Greenstone Belts of the Baltic Shield: Sources and Geodynamic Regimes of Formation (Evidence from Geochemical Data), Region. Geol. Metallogen., 2008, no. 2, pp. 5–18.Google Scholar
  4. Astafieva, M.M., Hoover, R.B., Rozanov, A.Yu., et al., Fossil Microorganisms in the Archean, Proc. SPIE, 2009, vol. 6309, pp. 630904-1–630904-10.Google Scholar
  5. Bau, V. and Dulski, P., Anthropogenic Origin of Positive Gadolinium Anomalies in River Waters, Earth Planet Sci. Lett., 1996, vol. 143, pp. 245–255.CrossRefGoogle Scholar
  6. Braun, J-J., Pagel, M., Muller, J-P., et al., Cerium Anomalies in Lateritic Profiles, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 781–795.CrossRefGoogle Scholar
  7. De Baar, H.J.W., Bacon, M.P., Brewer, P.G., et al., Rare Earth Elements in the Pacific and Atlantic Oceans, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1943–1959.CrossRefGoogle Scholar
  8. Dubinin, A.V. and Strekopytov, S.V., Investigation of the Behavior of Rare Earth Elements during the Leaching of Oceanic Sediments, Geokhimiya, 2001, no. 7, pp. 762–772 [Geochem. Int. (Engl. Transl.), 2001, no. 7, pp. 751–760].Google Scholar
  9. Dubinin, A.V., Geokhimiya redkozemel’nykh elementov v okeane (Geochemistry of Rare Earth Elements in the Ocean), Moscow: Nauka, 2006.Google Scholar
  10. Dubinin, A.V., Sval’nov, V.I., and Uspenskaya, T.Yu., Geochemistry of Ferromanganese Ore Formation in Sediments of the Northeast Basin in the Pacific, Litol. Polezn. Iskop., 2008, no. 2, pp. 115–127 [Lithol. Miner. Resour. (Engl. Transl.), 2008, no. 2, pp. 95–105].Google Scholar
  11. Elderfield, H. and Greaves, M.J., The Rare Earth Elements in Seawater, Nature, 1982, vol. 55, pp. 214–218.CrossRefGoogle Scholar
  12. Girnis, A.V. and Ryabchikov, I.D., Experimental Petrology and Genesis of Comatiites, in Komatiity i vysokomagnezial’nye vulkanity rannego dokembriya Baltiiskogo shchita (The Early Precambrian Komatiites and High-Magnesium Volcanics in the Baltic Shield), Leningrad: Nauka, 1988, pp. 162–180.Google Scholar
  13. Glebovitskii, V.A., Sedova, I.S., and Baltybaev, Sh.K., Metamorphism, in Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005, pp. 604–630.Google Scholar
  14. Glebovitskii, V.A., Turchenko S.I. Geologicheskii obzor // Rannii dokembrii Baltiiskogo shchita (Geological Review: Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005.Google Scholar
  15. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Florida: CRC Press Inc., 1986.Google Scholar
  16. Kheiskanen, K.I., Paleogeografiya Baltiiskogo shchita v Karel’skoe vremya (Paleogeography of the Baltic Shield in the Karelian Time), Petrozavodsk: KarNTs RAN, 1990.Google Scholar
  17. Klein, C., Some Precambrian Banded Iron-Formations (BIFs) from Around the World: Their Age, Geologic Setting, Mineralogy Metamorphism, Geochemistry, and Origin, Am. Mineral., 2005, vol. 90, pp. 1473–1499.CrossRefGoogle Scholar
  18. Korosov, V.I. and Nazarova, T.N., The Karelian Complex of the Kukasozero-Tikshezero Structure, in Geologiya Severo- i Vostochnokarel’skoi strukturnykh zon (Geology of the Northern and Eastern Karelian Structural Zones), Petrozavodsk: KarNTs AN SSSR, 1987, pp. 56–80.Google Scholar
  19. Kulikov, V.S., Galdobina, L.P., and Voinov, A., S, et. al., Jatulian Geology of the Paanajarvi-Kuolajarvi Synclinorium, in Jatulian Geology in the Eastern Part of the Baltic Shield, Rovaniemi, 1980, pp. 73–93.Google Scholar
  20. Levchenkov, O.A., Nikolaev, A.A., Bogomolov, E.S., and Yakovleva, S.Z., The U-Pb Age of Sumian Felsic Magmatites in Karelia, Stratigr. Geol. Korrelyatsiya, 1994, vol. 2, no. 1, pp. 3–9 [Stratigr. Geol. Correlation (Engl. Transl.), 1994, vol. 2, no. 1, pp. 3–8].Google Scholar
  21. Liu, Y.-G., Miah, M.R.U., and Schmitt, R.A., Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1361–1361.CrossRefGoogle Scholar
  22. Matrenichev, A.V. and Matrenichev, V.A., Petrology of Ludicovian Volcanism in the Onega Structure and Raahe-Ladoga Zone: The Baltic Shield, in Sbornik trudov molodykh uchenykh IGGD RAN (Collection of Works of Young Scientists from IGGD RAN), St. Petersburg: Politekh. Univ., 2010, p. 54.Google Scholar
  23. Menyailov, I.A., Nikitina, L.P., and Shapar, V.N., Geokhimicheskie osobennosti eksgalyatsii BTTI (Geochemical Features of Exhalations from BTTI), Moscow: Nauka, 1980.Google Scholar
  24. Middelburg, J.J., Van Der Weiden, C.H., and Woittiez, J.R.W., Chemical Processes Affecting the Mobility of Major, Minor and Trace Elements during Weathering of Granitic Rocks, Chem. Geol., 1988, vol. 68, pp. 253–273.CrossRefGoogle Scholar
  25. Miller, Yu.V., Struktura arkheiskikh zelenokamennykh poyasov (Structure of the Archean Greenstone Belts), Leningrad: Nauka, 1988.Google Scholar
  26. Murray, R.W., Buchholtz T., Brink, M.R., Jones, D.L., et al., Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale, Geology, 1990, vol. 18, pp. 268–271.CrossRefGoogle Scholar
  27. Nedachi, Y., Nedachi, M., Benett, G., et al., Geochemistry and Mineralogy of the 2.45 Ga Pronto Paleosols, Ontario, Canada, Chem. Geol., 2005, vol. 214, pp. 21–44.CrossRefGoogle Scholar
  28. Negrutsa, T.F., Paleogeografiya i litogenez rannego proterozoya oblasti sochleneniya karelid i belomorid (The Early Proterozoic Paleogegraphy and Lithogenesis at the Junction of Karelides and Belomorides), Leningrad: Leningr. Gos. Univ., 1979.Google Scholar
  29. Nesbitt, H.W., Mobility and Fractionation of Rare Elements during Weathering of a Granodiorite, Nature, 1979, vol. 279, pp. 206–210.CrossRefGoogle Scholar
  30. Ohta, A. and Kawabe, I., REE(III) Adsorption onto Mn Dioxide (δ-MnO2) and Fe Oxyhydroxide: Ce(III) Oxidation by δ-MnO2, Geochim. Cosmochim. Acta, 2005, vol. 65, pp. 695–703.CrossRefGoogle Scholar
  31. Panahi, A., Young, G.M., and Rainbird, R.H., Behavior of Major and Trace Elements (Including REE) during Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie, Quebec, Canada, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2199–2220.CrossRefGoogle Scholar
  32. Piper, D.Z., Rare Earth Elements in the Sedimentary Cycle: A Summary, Chem. Geol., 1974, vol. 14, pp. 285–304.CrossRefGoogle Scholar
  33. Polekhovskii, Yu.S., The Sumian and Sariolian in the Paanajarva Structural Zone: Northern Karelia, Trudy VSEGEI, 1985, vol. 339, pp. 106–113.Google Scholar
  34. Price, R.C., Gray, C.M., Wilson, R.E., et al., The Effects of Weathering of Rare Earth Elements, Y and Ba Abundances in Tertiary Basalts from Southeastern Australia, Chem. Geol., 1991, vol. 93, pp. 245–265.CrossRefGoogle Scholar
  35. Raevskaya, M.B., Gor’kovets, V.Ya., Svetova, A.I., and Volodichev, O.I., Stratigrafiya dokembriya Karelii. Opornye razrezy verkhnearkheiskikh otlozhenii (The Precambrian Stratigraphy of Karelia: Reference Sections of Upper Archean Rocks), Petrozavodsk: KarNTs RAN, 1992.Google Scholar
  36. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005.Google Scholar
  37. Ronov, A.B. and Migdisov, A.A., Geochemical History of the Crystalline Basement and the Sedimentary Cover of the Russian and North American Platforms, Sedimentology, 1971, vol. 16, pp. 167–185.CrossRefGoogle Scholar
  38. Rozanov, A.Yu., Astaf’eva, M.M., Vrevskii, A.B., et al., Microfossils in the Early Precambrian Weathering Crusts of the Fennoscandian Shield Mikrofossilii rannedokembriiskikh kor vyvetrivaniya Fennoskandinavskogo shchita, Otech. Geol., 2008, no. 3, pp. 83–90.Google Scholar
  39. Rozanov, A.Yu., Precambrian Geobiology, Paleontol. J., 2006, vol. 40, pp. 434–443.CrossRefGoogle Scholar
  40. Sochava, A.V., Podkovyrov, V.N., and Felitsyn, S.B., The Late Precambrian Evolution Stage of the Composition of Terrigenous Rocks, Stratigrafiya. Geol. Korrelyatsiya, 1994, no. 2, pp. 3–21.Google Scholar
  41. Strakhov, N.M., Tipy litogeneza i ikh evolyutsiya v istorii Zemli (Lithogenesis Types and Their Evolution in the Earth’s History), Moscow: Gosgeoltekhizdat, 1963.Google Scholar
  42. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell, 1985.Google Scholar
  43. Utsunomiya, S., Murakami, T., Nakada, M., et al., Iron Oxidation State of a 2.45 Byr-Old Paleosols Developed on Mafic Volcanics, Geochim. Cosmochim. Acta, 2003, vol. 62, pp. 213–221.CrossRefGoogle Scholar
  44. Watanabe, Y., Martini, J.E.J., and Ohmoto, H., Geochemical Evidence for Terrestrial Ecosystems 2.6 Billion Years Ago, Nature, 2000, vol. 408, pp. 574–578.CrossRefGoogle Scholar
  45. Watanabe, Y., Stewart, B.W., and Ohmoto, H., Organic- and Carbonate-Rich Soil Formation ∼2.6 Billion Years Ago at Shagen, East Transvaal District, South Africa, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 2129–2151.CrossRefGoogle Scholar
  46. Wiggering, H. and Beukes, N.J., Petrography and Geochemistry of a 2000–2200-Ma-Old Hematitic Paleo-Alteration Profile on Ongeluk Basalt of the Transvaal Supergroup, Griqualand West, South Africa, Precambr. Res., 1990, vol. 46, pp. 241–258.CrossRefGoogle Scholar
  47. Wright, J., Schrader, H., and Holser, W.T., Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 631–644.CrossRefGoogle Scholar
  48. Yang, W., Holland, H.D., and Rye, R., Evidence for Low or No Oxygen in the Late Archean Atmosphere from the ∼2.76 Ga Mt. Roe #2 Paleosol, Western Australia. Part 3, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 3707–3718.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Alfimova
    • 1
  • S. B. Felitsyn
    • 1
  • V. A. Matrenichev
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations