Lithology and Mineral Resources

, Volume 41, Issue 1, pp 45–53

Nodules in sediments of an artificial reservoir in the Altai Territory

  • B. L. Shcherbov
  • V. D. Strakhovenko
Article

Abstract

Nodules of various compositions, including ferromanganese nodules, have been found in bottom sediments of an artificial reservoir in the central Altai Territory. The nodules were formed in the alkaline environment against the background of a high carbonate content and saturation with oxygen. The rate of nodule growth is no less than 1.7–1.8 mm/yr and the pH value of water varies from 8.0 to 9.7. Fe and Mn contents in soil and loam of the drainage area are lower than the global clarke value, whereas Ca, K, and Na contents are much higher. The main mass of bottom sediments in the reservoir is markedly enriched in Cd, Mg, Mn, Sr, Ni, Cr, Sb, V, and Pb, but they are depleted in Cu, Mo, Zn, and Li, relative to the soil and loam. Elements in ferromanganese nodules are arranged in the following way in terms of the decreasing concentration coefficient: Mn (27) > Ba (13.4) > Co (10.7) > Mo (9.2) > Cd (5.35) > Ni (3.88) > V (3.52) > Cu (3.3) > Fe (3.2) > Sb (2.17) > Sr (2.04) > Pb (1.5) > Zn (1.43) > Cr (1.1) > Li (0.78) > Mg (0.75) > Na (0.69) > K (0.67) > Ca (0.51). The microelemental composition of nodules in the reservoir qualitatively fits the composition of ferromanganese nodules in seas and oceans. However, the contents of major ore elements (Ni, Cu, Co, Zn, Pb, Mo, and V) in ferromanganese nodules from the World Ocean are much higher than in nodules from the examined reservoir.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baturin, G.N., Geokhimiya zhelezomargantsevykh konkretsii okeana (Geochemistry of Ferromanganese Nodules of the Ocean), Moscow: Nauka, 1986.Google Scholar
  2. Bezrukov, P.L. and Andryushchenko, P.F., Ferromanganese Nodules in the Indian Ocean, Izv. Akad. Nauk SSSR, Ser. Geol., 1972, no. 9, pp. 3–20.Google Scholar
  3. Bobrov, V.A. and Gofman, A.M., Laboratornyi gamma-spektrometricheskii analiz estestvennykh radioaktivnykh elementov (metodicheskie razrabotki) (Laboratory Gammaspectrometric Analysis of Natural Radioactive Elements: Recommended Procedures), Novosibirsk: Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, 1971.Google Scholar
  4. Dubinina, G.A. and Deryugina, Z.P., Microbiological Transformation of Various Forms of Iron in a Meromictic Lake, Zh. Obshch. Biol., 1969, vol. 30, no. 5, pp. 602–610.Google Scholar
  5. Ekogeokhimiya Zapadnoi Sibiri (Ecogeochemistry of Western Siberia), Polyakov, G.V., Ed., Novosibirsk: Nauchno-Issled. Tsentr Otd. Inst. Geol. Geokhim. Miner. Sib. Otd. Ross. Akad. Nauk, 1996.Google Scholar
  6. Gamayunov, K.V., Goncharov, A.I., Lagutin, A.A., and Makhon’ko, K.P., Recognition of Areas of Radioactive Fallout after Nuclear Explosions Based on β-Activity Fallout Measurements at Meteorological Stations, Vest. Nauchn. Programmy “Semipalatinskii Poligon-Altai”, 1995, no. 4, pp. 21–51.Google Scholar
  7. Il’in, V.B., Tyazhelye metally v sisteme pochva-rastenie (Heavy Metals in the Soil-Plant System), Novosibirsk: Nauka, 1991.Google Scholar
  8. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, CRC Press Inc., Boca Raton, 1984. Translated as Mikroelementy v pochvakh i rasteniyakh, Moscow: Mir, 1989.Google Scholar
  9. Kalinenko, V.O., Origin of Ferromanganese Nodules, Mikrobiologiya, 1949, vol. 18, no. 4, pp. 528–532.Google Scholar
  10. Krotov, B.P., Release of Iron and Manganese Hydroxides in Lakes, Dokl. Akad. Nauk SSSR, 1950, vol. 71, no. 3, pp. 533–536.Google Scholar
  11. Kuznetsov, S.I., Mikroflora ozer i ee geokhimicheskaya deyatel’nost’ (Lake Microflora and Its Geochemical Activity), Leningrad: Nauka, 1970.Google Scholar
  12. Loborev, V.M., Sudakov, V.V., Volobuev, N.M., et al., Refinement of the List of Nuclear Explosions at the Semipalatinsk Test Site and Their Radioactive Impact on the Altai Territory, Vest. Nauchn. Programmy “Semipalatinskii Poligon-Altai,” 1995, no. 4, pp. 8–20.Google Scholar
  13. Mero, J., The Mineral Resources of the Sea, Amsterdam: Elsevier, 1965.Google Scholar
  14. Mikhailov, N.N., Contamination of Lake Bottom Sediments in the Altai Territory, in Nuclear Tests, Environment, and Public Health in the Altai Territory, Barnaul: Altai Gos. Univ., 1993, vol. 2, pp. 28–44.Google Scholar
  15. Ovchinnikov, A.M., Gidrokhimiya (Hydrochemistry), Moscow: Nedra, 1970.Google Scholar
  16. Perel’man, A.I., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Vysshaya Shkola, 1975.Google Scholar
  17. Perel’man, A.I., Geokhimiya (Geochemistry), Moscow: Vysshaya Shkola, 1989.Google Scholar
  18. Semenovich, N.I., Donnye otlozheniya Ladozhskogo ozera (Bottom Sediments in Lake Ladoga), Moscow: Akad. Nauk SSSR, 1966.Google Scholar
  19. Semipalatinskii poligon. Obespechenie obshchei i radiatsionnoi bezopasnosti yadernykh ispytanii (The Semipalatinsk Test Site: Provisions for the General and Radioactive Safety of Nuclear Tests) Logachev, V.A., Ed., Moscow: IGEM Ross. Akad. Nauk, 1997.Google Scholar
  20. Shcherbov, B.L., Strakhovenko, V.D., and Malikova, I.N., Natural and Manmade Sources of the Element Composition of Bottom Sediments in Water Basins of the Altai Territory, Geol. Geofiz., 2003, vol. 44, no. 10, pp. 1024–1035.Google Scholar
  21. Shoikhet, Ya.N., Loborev, V.M., Kiselev, V.I., et al., Radioactive Impact of the Semipalatinsk Test Site on the Altai Territory, Vest. Nauchn. Programmy “Semipalatinskii Poligon-Altai”, Barnaul: Altai. Gos. Univ., 1966, no. 1 (9), pp. 28–44.Google Scholar
  22. Simonova, V.I., Atomno-absorbtsionnye metody opredeleniya elementov v porodakh i mineralakh (The Atomic Absorption Method for the Determination of Elements in Rocks and Minerals), Novosibirsk: Nauka, 1986.Google Scholar
  23. Skornyakova, N.S., Khimicheskii sostav zhelezomargantsevykh konkretsii Tikhogo okeana (Chemical Composition of Ferromanganese Nodules in the Pacific), Bezrukov, P.L., Ed., Moscow: Nauka, 1976, pp. 168–169.Google Scholar
  24. Strakhov, N.M., Brodskaya, N.G., Knyazeva, L.I., et al., Obrazovanie osadkov v sovremennykh vodoemakh (Sedimentation in Modern Water Basins), Moscow: Akad. Nauk SSSR, 1954.Google Scholar
  25. Taylor, S.R. and McLennan, S.M., The Composition and Evolution of the Continental Crust: Rare Element Evidence from Sedimentary Rocks, Philos. Trans. R. Soc., 1981, A 301, pp. 381–399.Google Scholar
  26. Taylor, S.R., McLennan, S.M., and McCulloch, M.T., Geochemistry of Loess, Continental Crustal Composition and Crustal Model Ages, Geochim. Cosmochim. Asta, Pergamon Press Ltd., 1983, vol. 47, pp. 1897–1905.Google Scholar
  27. Tugarinov, A.I., Obshchaya geokhimiya (General Geochemistry), Moscow: Atomizdat, 1973.Google Scholar
  28. Verigina, K.V., Problem of Iron Migration and Accumulation during Soil Formation, in Vyvetrivanie i pochvoobrazovanie, (Weathering and Soil Formation), Moscow, 1950, issue 34, pp. 190–201.Google Scholar
  29. Vinogradov, A.P., Geokhimiya Redkikh i Rasseyannykh Elementov v Pochvakh (Geochemistry of Rare and Trace Elements in Soils), Moscow: Akad. Nauk SSSR, 1957.Google Scholar
  30. Vital, D.A., Modern Carbonate Nodules in Salt Lakes of the Kulunda Steppe and Their Genesis, Tr. Inst. Geol. Nauk Akad. Nauk SSSR, Ser. Geol., 1950, issue 125.Google Scholar
  31. Voitkevich, G.V. and Zakrutkin, V.V., Osnovy Geokhimii (Fundamentals of Geochemistry), Rostov: Rostov. Univ., 1970.Google Scholar
  32. Volkov, I.I., Ferromanganese Nodules, in Okeanologiya. Khimiya okeana (Oceanology: Oceanic Chemestry), Vol. 2: Geochemistry of Bottom Sediments, Moscow: Nauka, 1979, pp. 414–467.Google Scholar
  33. Yoshimura, S., Contribution to Iron in Lake Water of Japan (Second Report), Jap. J. Geol. Geogr., 1936, vol. 13, pp. 39–56.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • B. L. Shcherbov
    • 1
  • V. D. Strakhovenko
    • 1
  1. 1.United Institute of Geology, Geophysics, and Mineralogy, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations