Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An XPS Study of the Interaction of Rhodium Foil with NO2

  • 1 Accesses

Abstract

The interaction of rhodium foil with nitrogen dioxide over a temperature range of 30–450°C at three NO2 pressures of 10–6, 10–5, and 10–4 mbar was studied using X-ray photoelectron spectroscopy (XPS). At all of the three pressures, a three-dimensional surface oxide film with the Rh2O3 stoichiometry was formed on the foil surface starting from a temperature of 150°C. As the interaction temperature was increased at an NO2 pressure of 10–6 mbar, the film thickness d initially increased to reach a maximum of ~2.0 nm at 350°C and then decreased due to the decomposition of Rh2O3 to the metal. At pressures of 10–5 and 10–4 mbar, a monotonic increase in d up to 3.0 or 4.7 nm, respectively, was observed in a temperature range of 150–450°C. In the case of the interaction with the participation of molecular oxygen at a pressure of 10–4 mbar and temperatures of 30–450°C, the Rh foil surface was not oxidized. The results of the study on the interaction of NO2 with Rh were compared with the data obtained earlier for Pd and Pt under comparable conditions.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Gandhi, H.S., Graham, G.W., and McCabe, R.W., J. Catal. 2003, vol. 216, p. 433.

  2. 2

    Kaspar, J., Fornasiero, P., and Hickey, N., Catal. Today, 2003, vol. 77, p. 419.

  3. 3

    Cooper, J. and Beecham, J., Platinum Met. Rev., 2013, vol. 57, p. 281.

  4. 4

    Amberntsson, A., Fridell, E., and Skoglundh, M., Appl. Catal., B, 2003, vol. 46, p. 429.

  5. 5

    Papapolymerou, G.A. and Schmidt, L.D., Langmuir, 1985, vol. 1, p. 488.

  6. 6

    Krause, K.R. and Schmidt, L.D., Catal. Lett., 1992, vol. 14, p. 141.

  7. 7

    Kaspar, J., de Leitenburg, C., Fornasiero, P., Trovarelli, A., and Graziani, M., J. Catal., 1994, vol. 146, p. 136.

  8. 8

    Jirsak, T., Dvorak, J., and Rodriguez, J.A., Surf. Sci., 1999, vol. 436, p. L683.

  9. 9

    Egelhoff, W.F., The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, King, D.A. and Woodruff, D.P., Eds., New York: Elsevier, 1982.

  10. 10

    Shelef, M. and Graham, G.W., Catal. Rev. Sci. Eng., 1994, vol. 36, p. 433.

  11. 11

    Setterfild, Ch., Prakticheskii kurs geterogennogo kataliza (Practical Course of Heterogeneous Catalysis), Moscow: Mir, 1984. Satterfield Ch.N., Heterogeneous Catalysis in Practice, New York: McGrow-Hill, 1980.

  12. 12

    Parres-Esclapez, S., Illan-Gomez, M.J., Salinas-Martinez de Lecea, C., and Bueno-Lopez, A., Int. J. Greenhouse Gas Control, 2012, vol. 11, p. 251.

  13. 13

    Hofstad, K.H., Hoebink, J.H.B.J., Holmen, A., and Marin, G.B., Catal. Today, 1998, vol. 40, p. 157.

  14. 14

    Mallens, E.P.J., Hoebink, J.H.B.J., and Marin, G.B., J. Catal., 1997, vol. 167, p. 43.

  15. 15

    Buyevskaya, O.V., Walter, K., Wolf, D., and Baerns, M., Catal. Lett., 1996, vol. 38, p. 81.

  16. 16

    Eriksson, S., Rojas, S., Boutonnet, M., and Fierro, J.L.G., Appl. Catal., A, 2007, vol. 326, p. 8.

  17. 17

    Frontera, P., Macario, A., Ferraro, M., and Antonucci, P., Catalysts, 2017, vol. 7, p. 59.

  18. 18

    Lee, C. and Schmidt, L.D., J. Catal., 1986, vol. 101, p. 123.

  19. 19

    Gao, S. and Schmidt, L.D., J. Catal., 1988, vol. 111, p. 210.

  20. 20

    Root, T.W., Schmidt, L.D., and Fisher, G.B., Surf. Sci., 1983, vol. 134, p. 30.

  21. 21

    Kondratenko, E.V., Kraehnert, R., Radnik, J., Baerns, M., and Perez–Ramirez, J., Appl. Catal., A, 2006, vol. 298, p. 73.

  22. 22

    Bueno-López, A., Such-Basáñez, I., and Salinas-Martínez de Lecea, C., J. Catal. 2006, vol. 244, p. 102.

  23. 23

    Gao, F., Cai, Y., Gath, K.K., Wang, Y., Chen, M.S., Guo, Q.L., and Goodman, D.W., J. Phys. Chem. C, 2009, vol. 113, p. 182.

  24. 24

    Oh, S.H. and Carpenter, J.E., J. Catal. 1983, vol. 80, p. 472.

  25. 25

    Peden, C.H.F., Goodman, D.W., Blair, D.S., Berlowitz, P.J., Fisher, G.B., and Oh, S.H., J. Phys. Chem., 1988, vol. 92, p. 1563.

  26. 26

    Westerström, R., Wang, J.G., Ackermann, M.D., Gustafson, J., Resta, A., Mikkelsen, A., Andersen, J.N., Lundgren, E., Balmes, O., Torrelles, X., Frenken, J.W.M., and Hammer, B., J. Phys.: Condens. Matter, 2008, vol. 20, p. 184018.

  27. 27

    Gustafson, J., Westerström, R., Resta, A., Mikkelsen, A., Andersen, J.N., Balmes, O., Torrelles, X., Schmid, M., Varga, P., Hammer, B., Kresse, G., Baddeley, C.J., and Lundgren, E., Catal. Today, 2009, vol. 145, p. 227.

  28. 28

    Kibis, L.S., Stadnichenko, A.I., Koscheev, S.V., Zaikovskii, V.I., and Boronin, A.I., J. Phys. Chem. C, 2016, vol. 120, p. 19142.

  29. 29

    Gustafson, J., Westerstrom, R., Mikkelsen, A., Torrelles, X., Balmes, O., Bovet, N., Andersen, J.N., Baddeley, C.J., and Lundgren, E., Phys. Rev. B, 2008, vol. 78, p. 045423.

  30. 30

    Flege, J.I. and Sutter, P., Phys. Rev. B, 2008, vol. 78, p. 153 402.

  31. 31

    Grass, M.E., Zhang, Y., Butcher, D.R., Park, J.Y., Li, Y., Bluhm, H., Bratlie, K.M., Zhang, T., and Somorjai, G.A., Angew. Chem. Int. Ed., 2008, vol. 47, p. 8893.

  32. 32

    Peterlinz, K.A. and Sibener, S.J., J. Phys. Chem., 1995, vol. 99, p. 2817.

  33. 33

    Peuckert, M., Surf. Sci., 1984, vol. 141, p. 500.

  34. 34

    Burkhardt, J. and Schmidt, L.D., J. Catal. 1989, vol. 116, p. 240.

  35. 35

    Salanov, A.N. and Savchenko, V.I., React. Kinet. Catal. Lett., 1993, vol. 49, p. 29.

  36. 36

    Tolia, A.A., Smiley, R.J., Delgass, W.N., Takoudis, C.G., and Weaver, M.J., J. Catal., 1994, vol. 150, p. 56.

  37. 37

    Weng-Sieh, Z., Gronsky, R., and Bell, A.T., J. Catal., 1997, vol. 170, p. 62.

  38. 38

    Suhonen, S., Valden, M., Hietikko, M., Laitinen, R., Savimäki, A., and Härkönen, M., Appl. Catal., A, 2001, vol. 218, p. 151.

  39. 39

    Kalinkin, A.V., Smirnov, M.Y., and Bukhtiyarov, V.I., Kinet. Catal., 2016, vol. 57, p. 826.

  40. 40

    Smirnov, M.Yu., Klembovskii, I.O., and Kalinkin, A.V., Bukhtiyarov V.I., Kinet. Catal., 2018, vol. 59, p. 786.

  41. 41

    Kalinkin, A.V., Smirnov, M.Yu., Klembovskii, I.O., Sorokin, A.M., Gladkii, A.Yu., and Bukhtiyarov, V.I., J. Struct. Chem., 2018, vol. 59, p. 1726.

  42. 42

    Kalinkin, A.V., Sorokin, A.M., Smirnov, M.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2014, vol. 55, p. 354.

  43. 43

    Vovk, E.I., Kalinkin, A.V., Smirnov, M.Yu., Klembovskii, I.O., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2017, vol. 121, p. 17297.

  44. 44

    Smirnov, M.Yu., Kalinkin, A.V., Vovk, E.I., Simonov, P.A., Gerasimov, E.Yu., Sorokin, A.M., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2018, vol. 428, p. 972.

  45. 45

    Smirnov, M.Yu., Vovk, E.I., Nartova, A.V., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, p. 653.

  46. 46

    Kalinkin, A.V., Smirnov, M.Yu., Bukhtiyarov, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 796.

  47. 47

    Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii. Sprav. (X-ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

  48. 48

    Zemlyanov, D., Azalos-Kiss, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlogl, R., Gabasch, H., Unterberger, W., Hayek, K., and Klotzer, B., Surf. Sci., 2006, vol. 600, p. 983.

  49. 49

    http://xpspeak.software.informer.com/4.1/.

  50. 50

    Marot, L., Mathys, D., De Temmerman, G., and Oelhafen, P., Surf. Sci., 2008, vol. 602, p. 3375.

  51. 51

    Beck, D.D., DiMaggio, C.L., and Fisher, G.B., Surf. Sci., 1993, vol. 297, p. 303.

  52. 52

    Blomberg, S., Lundgren, E., Westerström, R., Erdogan, E., Martin, N.M., Mikkelsen, A., Andersen, J.N., Mittendorfer, F., and Gustafson, J., Surf. Sci., 2012, vol. 606, p. 1416.

  53. 53

    Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: Perkin–Elmer Co., 1992.

  54. 54

    Gibson, K.D., Colonell, J.I., and Sibener, S.J., Surf. Sci., 1999, vol. 443, p. 125.

  55. 55

    Koda, Y., Sumida, H., Ogawa, S., and Tsukada, C., J. Surf. Sci. Nanotechnol., 2018, vol. 16, p. 36.

  56. 56

    Smirnov, M.Yu., Vovk, E.I., Kalinkin, A.V., Simonov, P.A., Gerasimov, E.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, p. 663.

  57. 57

    Shinotsuka, H., Tanuma, S., Powell, C.J., and Penn, D.R., Surf. Interface Anal., 2015, vol. 47, p. 871.

  58. 58

    Speight, J.G., Lange’s Handbook of Chemistry, 16th ed., New York: McGrows Hill, 2005.

  59. 59

    Smirnov, M.Yu., Vovk, E.I., Kalinkin, A.V., Pashis, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2012, vol. 53, p. 117.

  60. 60

    Suhonen, S., Hietikko, M., Polvinen, R., Valden, M., Laitinen, R., Kallinen, K., and Harkonen, M., Surf. Interface Anal., 2002, vol. 34, p. 76.

Download references

Funding

This work was carried out at the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences within the framework of a state contract (project no. AAAA-A17-117041710078-1).

Author information

Correspondence to M. Yu. Smirnov.

Additional information

Translated by Valentin Makhlyarchuk

Abbreviations: XPS, X-ray photoelectron spectroscopy; d, film thickness; Eb, binding energy; FWHM, full width at half maximum; ASF, atomic sensitivity factor; λ, mean free path of photoelectrons.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smirnov, M.Y., Kalinkin, A.V. & Bukhtiyarov, V.I. An XPS Study of the Interaction of Rhodium Foil with NO2. Kinet Catal 60, 823–831 (2019). https://doi.org/10.1134/S0023158419060119

Download citation

Keywords:

  • rhodium
  • NO2
  • Rh2O3
  • X-ray photoelectron spectroscopy (XPS)