Advertisement

Kinetics and Catalysis

, Volume 60, Issue 5, pp 582–605 | Cite as

Design and Characterization of Nanocomposite Catalysts for Biofuel Conversion into Syngas and Hydrogen in Structured Reactors and Membranes

  • V. A. SadykovEmail author
  • M. N. Simonov
  • Yu. N. Bespalko
  • L. N. Bobrova
  • N. F. Eremeev
  • M. V. Arapova
  • E. A. Smal’
  • N. V. Mezentseva
  • S. N. Pavlova
Article
  • 26 Downloads

Abstract

This review considers the problems associated with the development and operation of highly active and stable structured catalysts for biogas/biofuel conversion into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite, and spinel structures and their nanocomposites promoted by nanoparticles of platinum group metals and alloys based on nickel. The design of these catalysts is based on finding the relationships between the methods of their synthesis, composition, real structure/microstructure, surface properties, and oxygen mobility and reactivity largely determined by the metal–support interaction. This requires the use of modern structural, spectroscopic, kinetic methods, and mathematical modeling. Thin layers of optimized catalysts deposited on structured heat-conducting supports demonstrated high activity and resistance to carbonization in the processes of biogas and biofuels conversion into syngas, and catalysts deposited on asymmetric ceramic membranes with mixed ionic–electronic conductivity allowed oxygen or hydrogen to be separated from complex mixtures with 100% selectivity.

Keywords:

nanocrystalline mixed oxides fluorite, perovskite, spinel structures synthesis characterization of the structure, surface, mobility and reactivity of oxygen catalysis of biofuel conversion into syngas mechanism structured catalysts and catalytic membranes performance and stability mathematical modeling 

Notes

FUNDING

Studies of structured catalysts and membranes were carried out in the framework of the state assignment of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. 0303-2016-0013). The authors acknowledge support from the Russian Science Foundation according to project no. 18-73-10 167 on the synthesis of catalysts in a supercritical environment and their research.

REFERENCES

  1. 1.
    Graves, C., Ebbesen, S.D., Mogensen, M., and Lackner, K.S., Renew. Sust. Energ. Rev., 2011, vol. 15, p. 1.CrossRefGoogle Scholar
  2. 2.
    Vlachos, D.G. and Caratzoulas, S., Chem. Eng. Sci., 2010, vol. 65, p. 18.CrossRefGoogle Scholar
  3. 3.
    Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., and Sun, Y., Catal. Today, 2009, vol. 148, p. 221.CrossRefGoogle Scholar
  4. 4.
    Usman, M., WanDaud, W.M.A., and Abbas, H.F., Renew. Sust. Energ. Rev., 2015, vol. 45, p. 710.CrossRefGoogle Scholar
  5. 5.
    Kumar, N., Shojaee, M., and Spivey, J.J., Curr. Opin. Chem. Eng., 2015, vol. 9, p. 8.CrossRefGoogle Scholar
  6. 6.
    Tomishige, K., Li, D., Tamura, M., and Nakagawa, Y., Catal. Sci. Technol., 2017, vol. 7, p. 3952.CrossRefGoogle Scholar
  7. 7.
    Pakhare, D. and Spivey, J., Chem. Soc. Rev., 2014, vol. 43, p. 7813.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Al-Fatesh, A.S., Ibrahim, A.A., Haider, S., and Fakeeha, A.H., J. Chin. Chem. Soc., 2013, vol. 60, p. 1297.CrossRefGoogle Scholar
  9. 9.
    Li, D., Li, X., and Gong, J., Chem. Rev., 2016, vol. 116, p. 11529.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vaidya, P.D. and Rodrigues, A.E., Chem. Eng. J., 2006, vol. 117, p. 39.CrossRefGoogle Scholar
  11. 11.
    Chen, J., Sun, J., and Wang, Y., Ind. Eng. Chem. Res., 2017, vol. 56, no. 16, p. 4627.CrossRefGoogle Scholar
  12. 12.
    Chattanathan, S.A., Adhikari, S., and Abdoulmoumine, N., Renew. Sust. Energ. Rev., 2012, vol. 16, p. 2366.CrossRefGoogle Scholar
  13. 13.
    Llorca, J., Cortes Corberan, V., Divins, N. J., Fraile, R.O., and Taboada, E., Hydrogen from Bioethanol, in Renewable Hydrogen Technologies: Production, Purification, Storage, Application and Safety, Amsterdam: Elsevier, 2013, p. 135.Google Scholar
  14. 14.
    Bion, N., Eprona, F., and Duprez, D., Catalysis, 2010, vol. 22, p. 1.Google Scholar
  15. 15.
    Contreras, J.L., Salmones, J., Colín-Luna, J.A., Nuno, L., Quintana, B., Cordova, I., Zeifert, B., Tapia, C., and Fuentes, G.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 18835.CrossRefGoogle Scholar
  16. 16.
    Hou, T., Zhang, S., Chen, Y., Wang, D., and Cai, W., Renew. Sust. Energ. Rev., 2015, vol. 44, p. 132.CrossRefGoogle Scholar
  17. 17.
    Sharma, Y.C., Kumar, A., Prasad, R., and Upadhyay, S.N., Renew. Sust. Energ. Rev., 2017, vol. 74, p. 89.CrossRefGoogle Scholar
  18. 18.
    Silva, J.M., Soria, M.A., and Madeira, L.M., Renew. Sust. Energ. Rev., 2015, vol. 42, p. 1187.CrossRefGoogle Scholar
  19. 19.
    Papageridis, K.N., Siakavelas, G., Charisiou, N.D., Avraam, D.G., Tzounis, L., Kousi, K., and Goula, M.A., Fuel Process. Technol., 2016, vol. 152, p. 156.CrossRefGoogle Scholar
  20. 20.
    Hu, X. and Lu, G., Appl. Catal., B, 2010, vol. 99, p. 289.CrossRefGoogle Scholar
  21. 21.
    De, S., Zhang, J., Luque, R., and Yan, N., Energy Environ. Sci., 2016, vol. 9, p. 3314.CrossRefGoogle Scholar
  22. 22.
    Sadykov, V., Bobrova, L., Pavlova, S., Simagina, V., Makarshin, L., Parmon, V., Ross, J.R.H., Van Veen, A.C., and Mirodatos, C., Syngas Generation from Hydrocarbons and Oxygenates with Structured Catalysts, New York: Nova Science, 2012, p. 140.Google Scholar
  23. 23.
    Sadykov, V.A., Pavlova, S.N., Alikina, G.M., Sazonova, N.N., Mezentseva, N.V., Arapova, M.V., Rogov, V.A., Krieger, T.A., Ishhenko, A.V., Gulyaev, R.V., Zadesenets, A.V., Roger, A.-C., Chan-Thaw, C.E., and Smorygo, O., Perovskite-Based Catalysts for Transformation of Natural Gas and Oxygenates into Syngas, in Perovskite: Crystallography, Chemistry and Catalytic Performance, Zhang, J. and Li, H., Eds., New York: Nova Science, 2013, p. 1.Google Scholar
  24. 24.
    Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kikuchi, R., and Eguchi, K., Appl. Catal., B, 2007, vol. 74, p. 144.CrossRefGoogle Scholar
  25. 25.
    Sadykov, V.A., Mezentseva, N.V., Alikina, G.M., Bunina, R.V., Pelipenko, V.V., Lukashevich, A.I., Vostrikov, Z.Y., Rogov, V.A., Krieger, T.A., Ishchenko, A.V., Zaikovskii, V.I., Bobrova, L.N., Ross, J.R., Smorygo, O.L., and Smirnova, A. et al., Nanocomposite catalysts for steam reforming of methane and biofuels: design and performance, in Nanocomposite Materials, Theory and Applications, Vienna: INTECH, 2011, p. 909.Google Scholar
  26. 26.
    Wang, Z., Wang, C., Chen, S., and Liu, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 5644.CrossRefGoogle Scholar
  27. 27.
    Kapokova, L., Pavlova, S., Bunina, R., Alikina, G., Krieger, T., Ishchenko, A., Rogov, V., and Sadykov, V., Catal. Today, 2011, vol. 164, p. 227.CrossRefGoogle Scholar
  28. 28.
    Pavlova, S., Kapokova, L., Bunina, R., Alikina, G., Sazonova, N., Krieger, T., Ishchenko, A., Rogov, V., Gulyaev, R., Sadykov, V., and Mirodatos, C., Catal. Sci. Technol., 2012, vol. 2, p. 2099.CrossRefGoogle Scholar
  29. 29.
    Sadovskaya, E.M., Frolov, D.D., Goncharov, V.B., Fedorova, A.A., Morozov, I.V., Klyushin, A.Yu., Vinogradov, A.S., Smal, E.A., and Sadykov, V.A., Catal. Sustainable Energy, 2016, vol. 3, p. 25.Google Scholar
  30. 30.
    Sadykov, V., Zarubina, V., Pavlova, S., Krieger, T., Alikina, G., Lukashevich, A., Muzykantov, V., Sadovskaya, E., Mezentseva, N., Zevak, E., Belyaev, V., and Smorygo, O., Catal. Today, 2010, vol. 156, p. 173.CrossRefGoogle Scholar
  31. 31.
    Sadykov, V., Eremeev, N., Sadovskaya, E., Bobin, A., Ishchenko, A., Pelipenko, V., Muzykantov, V., Krieger, T., and Amanbaeva, D., Solid State Ionics, 2015, vol. 273, p. 35.CrossRefGoogle Scholar
  32. 32.
    Sadykov, V., Usoltsev, V., Yeremeev, N., Mezentseva, N., Pelipenko, V., Krieger, T., Belyaev, V., Sadovskaya, E., Muzykantov, V., Fedorova, Yu., Ishchenko, A., Salanov, A., Okhlupin, Yu., Uvarov, N., and Smorygo, O., et al, J. Eur. Ceram. Soc., 2013, vol. 33, p. 2241.CrossRefGoogle Scholar
  33. 33.
    Sadykov, V.A., Krasnov, A.V., Fedorova, Yu.E., Lukashevich, A.I., Bespalko, Yu.N., Eremeev, N.F., Skriabin, P.I., Valeev, K.R., and Smorygo, O.L., Int. J. Hydrogen Energy, 2018 (in press).  https://doi.org/10.1016/j.ijhydene.2018.02.182
  34. 34.
    Vernikovskaya, N.V., Bobrova, L.N., Pinaeva, L.G., Sadykov, V.A., Zolotarskii, I.A., Sobyanin, V.A., Buyakou, I., Kalinin, V., and Zhdanok, S., Chem. Eng. J., 2007, vol. 134, p. 180.CrossRefGoogle Scholar
  35. 35.
    Bobrova, L., Vernikovskaya, N., and Sadykov, V., Catal. Today, 2009, vol. 144, p. 185.CrossRefGoogle Scholar
  36. 36.
    Shelepova, E., Vedyagin, A., Sadykov, V., Mezentseva, N., Fedorova, Y., Smorygo, O., Klenov, O., and Mishakov, I., Catal. Today, 2016, vol. 268, p. 103.CrossRefGoogle Scholar
  37. 37.
    Bobrova, L.N., Sadykov, V.A., Mezentseva, N.V., Pelipenko, V.V., Vernikovskaya, N.V., Klenov, O.P., and Smorygo, O.L., Int. J. Hydrogen Energy, 2016, vol. 41, no. 8, p. 4632.CrossRefGoogle Scholar
  38. 38.
    Smorygo, O.L., Sadykov, V.A., and Bobrova, L.N., Open Cell Foams as Substrates For Design of Structured Catalysts, Solid Oxide Fuel Cells and Supported Asymmetric Membrane, New York: Nova Science, 2016, p. 207.Google Scholar
  39. 39.
    Reddy, B.M., Kumar, T.V., and Durgasri, N., Catalysis by Ceria and Related Materials, Trovarelli, A. and Fornasiero, P., Eds., Imperial College, 2013, 2nd ed., p. 397.Google Scholar
  40. 40.
    Pechini, M.P., US Patent 3330697, 1967.Google Scholar
  41. 41.
    Sadykov, V.A., Simonov, M.N., Mezentseva, N.V., Pavlova, S.N., Fedorova, Yu.E., Bobin, A.S., Bespalko, Yu.N., Ishchenko, A.V, Krieger, T.A., Glazneva, T.S., Larina, T.V., Cherepanova, S.V., Kaichev, V.V., Saraev, A.A., and Chesalov, Yu.A. et al., Open Chem., 2016, vol. 14, p. 363.CrossRefGoogle Scholar
  42. 42.
    Martins, M.L., Florentino, A.O., Cavalheiro, A.A., Silva, R.I.V., Dos Santos, D.I., and Saeki, M.J., Ceram. Int., 2014, vol. 40, p. 16023.CrossRefGoogle Scholar
  43. 43.
    Arapova, M.V., Pavlova, S.N., Rogov, V.A., Krieger, T.A., Ishchenko, A.V., and Roger, A.-C., Catal. Sustainable Energy, 2014, vol. 1, p. 10.Google Scholar
  44. 44.
    Sui, R. and Charpentier, P., Chem. Rev., 2012, vol. 112, no. 6, p. 3057.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Smirnova, M.Y., Pavlova, S.N., Krieger, T.A., Bespalko, Y.N., Anikeev, V.I., Chesalov, Y.A., Kaichev, V.V., Mezentseva, N.V., and Sadykov, V.A., J. Phys. Chem. B, 2017, vol. 11, no. 8, p. 1312.Google Scholar
  46. 46.
    Smirnova, M.Yu., Bobin, A.S., Pavlova, S.N., Ishchenko, A.V., Selivanova, A.V., Kaichev, V.V., Cherepanova, S.V., Krieger, T.A., Arapova, M.V., Roger, A.-C., Adamski, A., and Sadykov, V.A, Open Chem., 2017, vol. 15, p. 412.CrossRefGoogle Scholar
  47. 47.
    Advanced Nanomaterials for Catalysis and Energy. Synthesis, Characterization and Applications, Sadykov, V.A., Ed., Amsterdam: Elsevier, 2019. 567 p.Google Scholar
  48. 48.
    Hosseini, S.A. and Alvarez-Galvan, M.C., J. Taiwan Inst. Chem. Eng., 2016, vol. 61, p. 261.CrossRefGoogle Scholar
  49. 49.
    Szijjarto, G.P., Paszti, Z., Sajo, I., Erdohelyi, A., Radnoczi, G., and Tompos, A., J. Catal., 2013, vol. 305, p. 290.CrossRefGoogle Scholar
  50. 50.
    Hammiche-Bellal, Y., Djadoun, A., Meddour-Boukhobza, L., Benadda, A., Auroux, A., Berger, M.-H., and Mernache, F., Mater. Chem. Phys., 2016, vol. 177, p. 384.CrossRefGoogle Scholar
  51. 51.
    Saberi, A., Golestani-Fard, F., Sarpoolaky, H., Willert-Porada, M., Gerdes, T., and Simonc, R., J. Alloys Compd., 2008, vol. 462, p. 142.CrossRefGoogle Scholar
  52. 52.
    Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Catal. Commun., 2005, vol. 6, p. 497.CrossRefGoogle Scholar
  53. 53.
    Martins, M.L., Florentino, A.O., Cavalheiro, A.A., Silva, R.I.V., Dos Santos, D.I., and Saeki, M.J., Ceram. Int., 2014, vol. 40, p. 16023.CrossRefGoogle Scholar
  54. 54.
    Gama, L., Ribeiro, M.A., Barros, B.S., Kiminami, R.H.A., Weber, I.T., and Costa, A.C.F.M., J Alloys Compd., 2009, vol. 483, p. 453.CrossRefGoogle Scholar
  55. 55.
    Muroyama, H., Nakase, R., Matsui, T., and Eguchi, K., Int. J. Hydrogen Energy, 2010, vol. 35, p. 1575.CrossRefGoogle Scholar
  56. 56.
    Mobini, S., Meshkani, F., and Rezaei, M., J. Environ. Chem. Eng., 2017, vol. 5, p. 4906.CrossRefGoogle Scholar
  57. 57.
    Kim, H.-N., Kim, J.-M., Kim, M.-J., Ko, J.-W., Park, Y.-J., Lee, K., and Choi, D.H., Ceram. Int., 2017, vol. 43, p. 11312.CrossRefGoogle Scholar
  58. 58.
    Camargo, M.T.T., Jacques, Q., Caliman, L.B., Miagava, J., Hotza, D., Castro, R.H.R., and Gouvêa, D., Mater. Lett., 2016, vol. 171, p. 232.CrossRefGoogle Scholar
  59. 59.
    Giannakas, A.E., Ladavos A.K., Armatas, G.S., and Pomonis, P.J., Appl. Surf. Sci., 2007, vol. 253, p. 6969.CrossRefGoogle Scholar
  60. 60.
    Cosovic, A.R., Zak, T., Glisic, S.B., Sokic, M.D., Lazarevic, S.S., Cosovic, V.R., and Orlovic, A.M., J. Supercrit. Fluids, 2016, vol. 113, p. 96.CrossRefGoogle Scholar
  61. 61.
    Rahmat, N., Yaakob, Z., Pudukudy, M., Rahman, N.A., and Jahaya, S.S., Powder Technol., 2018, vol. 329, p. 409.CrossRefGoogle Scholar
  62. 62.
    Sadykov, V.A., Kriventsov, V.V., Moroz, E.M., Borchert, Yu.V., Zyuzin, D.A., Kol’ko, V.P., Kuznetsova, T.G., Ivanov, V.P., Boronin, A.I., Mezentseva, N.V., Burgina, E.B., and Ross, J., Solid State Phenom., 2007, vol. 128, p. 81.CrossRefGoogle Scholar
  63. 63.
    Sadykov, V.A., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Borchert, Yu.V., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Paukshtis, E.A., Muzykantov, V.S., Kuznetsov, V.L., Rogov, V.A., Ross, J., Kemnitz, E., and Mirodatos, C., Solid State Phenom., 2007, vol. 128, p. 239.CrossRefGoogle Scholar
  64. 64.
    Kol`ko, V., Zyuzin, D., Sadykov, V., Kriventsov, V., and Moroz, E., Glass Phys. Chem., 2007, vol. 33, no. 4, p. 470.Google Scholar
  65. 65.
    Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Yu.V., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Batuev, L.Ch., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.A., Paukshtis, E.A., Burgina, E.B., Trukhan, S.N., et al., Ceria-based fluorite-like oxide solid solutions promoted by precious metals as catalysts of methane transformation into syngas, in New Topics in Catalysis Research, McReynolds, D.K., New York: Nova Science, 2007, p. 97.Google Scholar
  66. 66.
    Kuznetsova, T.G. and Sadykov, V.A., Kinet. Catal., 2008, vol. 49, no. 6, p. 840.CrossRefGoogle Scholar
  67. 67.
    Sadykov, V., Mezentseva, N., Simonov, M., Smal, E., Arapova, M., Pavlova, S., Fedorova, Y., Chub, O., Bobrova, L., Kuzmin, V., Ishchenko, A., Krieger, T., Roger, A.-C., Parkhomenko, K., and Mirodatos, C., et al., Int. J. Hydrogen Energy, 2015, vol. 40, p. 7511.CrossRefGoogle Scholar
  68. 68.
    Sadykov, V., Pavlova, S., Smal, E., Arapova, M., Simonov, M., Mezentseva, N., Rogov, V., Glazneva, T., Lukashevich, A., Roger, A.-C., Parkhomenko, K., van Veen, A., and Smorygo, O., Catal. Today, 2017, vols. 293–294, p. 176.CrossRefGoogle Scholar
  69. 69.
    Arapova, M.V., Pavlova, S.N., Larina, T.V., Glazneva, T.S., Rogov, V.A., Krieger, T.A., Sadykov, V.A., Smorygo, O.L., Parkhomenko, K., and Roger, A., Hydrogen and syngas production via ethanol steam reforming over supported nickelates, in Materials and Technologies for Energy Efficiency, Mendes-Vilas, A., Ed., Florida: Brown Walker, 2015, p. 131.Google Scholar
  70. 70.
    Slostowski, C., Marre, S., Babot, O., Toupance, T., and Aymonier, C., Langmuir, 2014, vol. 30, p. 5965.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ishchenko, A.V., Study of the microstructure of materials of cathodes, anodes and electrolytes of solid oxide fuel cells by transmission electron microscopy, Cand. Sci. Dissertation, Novosibirsk: Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 2017.Google Scholar
  72. 72.
    Cortés Corberán, V., Rives, V., Mezentseva, N.V., Sadykov, V.A., and Martínez-Tamayo, E., Nanostructured Metal Oxide Catalyst, in Nanotechnology for Sustainable Manufacturing, Rickerb, D., Ed., Boca Raton, FL: CRC Press, 2014, p. 151.Google Scholar
  73. 73.
    Sadykov, V., Mezentseva, N., Muzykantov, V., Efremov, D., Gubanova, E., Sazonova, N., and Van Veen, A., MRS Proc., 2009, vol. 1122, p. O05-03.Google Scholar
  74. 74.
    Shmakov, A.N., Cherepanova, S.V., Zyuzin, D.A., Fedorova, Yu.E., Bobrikov, I.A., Roger, A.-C., Adamski, A., and Sadykov, V.A., Open Chem., 2017, vol. 15, p. 438.CrossRefGoogle Scholar
  75. 75.
    Bengaard, H.S., Norskov, J.K., Sehested, J., Clausen, B.S., Nielsen, L.P., Molenbroek, A.M., and Rostrup-Nielsen, J.R., J. Catal., 2002, vol. 209, p. 365.CrossRefGoogle Scholar
  76. 76.
    Bulgakov, N., Sadykov, V., Lunin, V., and Kemnitz, E., React. Kinet. Catal. Lett., 2002, vol. 76, no. 1, p. 111.CrossRefGoogle Scholar
  77. 77.
    Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Yu.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Isupova, L.A., and Zyryanov, V.V., et al., Mobility and Reactivity of the Surface and Lattice Oxygen of Some Complex Oxides with Perovskite Structure, in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Orlovskaya, N. and Browning, N., Eds., Boston: Kluwer Academic, 2004, p. 49.Google Scholar
  78. 78.
    Sadykov, V., Rogov, V., Ermakova, E., Arendarsky, D., Mezentseva, N., Alikina, G., Sazonova, N., Bobin, A., Pavlova, S., Schuurman, Y., and Mirodatos, C., Thermochim. Acta, 2013, vol. 567, p. 27.CrossRefGoogle Scholar
  79. 79.
    Bobin, A.S., Sadykov, V.A., Rogov, V.A., Mezentseva, N.V., Alikina, G.M., Sadovskaya, E.M., Glazneva, T.S., Sazonova, N.N., Smirnova, M.Yu., Veniaminov, S.A., Mirodatos, C., Galvita, V., and Marin, G.B., Top. Catal., 2013, vol. 56, p. 958.CrossRefGoogle Scholar
  80. 80.
    Simonov, M.N., Sadykov, V.A., Rogov, V.A., Bobin, A.S., Sadovskaya, E.M., Mezentseva, N.V., Ishchenko, A.V., Krieger, T.A., Roger, A.-C., and van Veen, A.C., Catal. Today, 2016, vol. 277, p. 157.CrossRefGoogle Scholar
  81. 81.
    Simonov, M., Rogov, V., Smirnova, M., and Sadykov, V., Catalysts, 2017, vol. 7, no. 9, p. 268.CrossRefGoogle Scholar
  82. 82.
    Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Kuznetsova, T.G., Prosvirin, I.P., Sadykov, V.A., Schuurman, Y., van Veen, A.C., and Mirodatos, C., Chem. Eng. J., 2014, vol. 257, p. 281.CrossRefGoogle Scholar
  83. 83.
    Pinaeva, L., Sadovskaya, E., Smal, E., Bobin, A., and Sadykov, V., Chem. Eng. J., 2018, vol. 333, p. 101.CrossRefGoogle Scholar
  84. 84.
    Sadykov, V.A., Gubanova, E.L., Sazonova, N.N., Pokrovskaya, S.A., Chumakova, N.A., Mezentseva, N.V., Bobin, A.S., Gulyaev, R.V., Ishchenko, A.V., Krieger, T.A., and Mirodatos, C., Catal. Today, 2011, vol. 171, p. 140.CrossRefGoogle Scholar
  85. 85.
    Mirodatos, C., van Veen, A.C., Pokrovskaya, S.A., Chumakova, N.A., Sazonova, N.N., and Sadykov, V.A., Chem. Eng. J., 2018, vol. 343, p. 530.CrossRefGoogle Scholar
  86. 86.
    Bitter, J.H., Seshan, K., and Lercher, J.A., J. Catal., 1998, vol. 176, p. 93.CrossRefGoogle Scholar
  87. 87.
    Larina, T.V., Fedorova, Y.E., Krieger, T.A., Ishchenko, A.V., Glazneva, T.S., Sadovskaya, E.M., Eremeev, N.F., and Sadykov, V.A., Catal. Sustainable Energy, 2017, vol. 4, p. 73.Google Scholar
  88. 88.
    Bespalko, Y., Sadykov, V., Eremeev, N., Skryabin, P., Krieger, T., Sadovskaya, E., Bobrova, L., Uvarov, N., Lukashevich, A., Krasnov, A., and Fedorova, Y., Compos. Struct., 2018, vol. 202, p. 1263.CrossRefGoogle Scholar
  89. 89.
    Sadykov, V.A., Kuznetsova, T.G., Frolova, Yu.V., Alikina, G.M., Lukashevich, A.I., Rogov, V.A., Muzykantov, V.S., Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Paukshtis, E.A., Mezentseva, N.V., Batuev, L.Ch., Parmon, V.N., and Neophytides, S., et al., Catal. Today, 2006, vol. 117, p. 475.CrossRefGoogle Scholar
  90. 90.
    Sadykov, V., Muzykantov, V., Bobin, A., Mezentseva, N., Alikina, G., Sazonova, N., Sadovskaya, E., Lukashevich, A., and Mirodatos, C., Catal. Today, 2010, vol. 157, p. 55.CrossRefGoogle Scholar
  91. 91.
    Sazonova, N.N., Pavlova, S.N., Pokrovskaya, S.A., Chumakova, N.A., and Sadykov, V.A., Chem. Eng. J., 2009, vol. 154, p. 17.CrossRefGoogle Scholar
  92. 92.
    Sazonova, N.N., Sadykov, V.A., Bobin, A.S., Pokrovskaya, S.A., Gubanova, E.L., and Mirodatos, C., React. Kinet. Catal. Lett., 2009, vol. 98, p. 35.CrossRefGoogle Scholar
  93. 93.
    Sadykov, V., Mezentseva, N., Zevak, E., Bobin, A., Krieger, T., Gulayev, R., Ischenko, A., Gubanova, E., Sazonova, N., Alikina, G., Shuurman, Y., and Mirodatos, C., Nanocrystalline doped ceria-zirconia solid solutions promoted by Pt and/or Ni: Structure, surface properties and catalytic performance in reactions of syngas production, First Int. Conf. on Materials for Energy, Extended Abstracts, Book B, Dechema, 2010, p. 845Google Scholar
  94. 94.
    Yaseneva, P., Pavlova, S., Sadykov, V., Alikina, G., Lukashevich, A., Rogov, V., Belochapkine, S., and Ross, J., Catal. Today, 2008, vol. 137, p. 23.CrossRefGoogle Scholar
  95. 95.
    Sadykov, V., Sobyanin, V., Mezentseva, N., Alikina, G., Vostrikov, Z., Fedorova, Yu., Pelipenko, V., Usoltsev, V., Tikhov, S., Salanov, A., Bobrova, L., Beloshapkin, S., Ross, J.R.H., Smorygo, O., Ulyanitskii, V., and Rudnev, V., Fuel, 2010, vol. 89, p. 1230.CrossRefGoogle Scholar
  96. 96.
    Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., and Alamdari, H., Chem. Rev., 2014, vol. 114, p. 10292.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., and Li, J., ACS Catal., 2014, vol. 4, p. 2917.CrossRefGoogle Scholar
  98. 98.
    Zhu, H., Zhang, P., and Dai, S., ACS Catal., 2015, vol. 5, p. 6370.CrossRefGoogle Scholar
  99. 99.
    Evans, E., Staniforth, J.Z., Darton, R.J., and Ormerod, R.M., Green Chem., 2014, vol. 16, p. 4587.CrossRefGoogle Scholar
  100. 100.
    Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., and Mondragon, F., Appl. Catal., A, 2008, vol. 334, p. 251.Google Scholar
  101. 101.
    Gallego, G.S., Marín, J.G., Batiot-Dupeyrat, C., Barrault, J., and Mondragon, F., Appl. Catal., A, 2009, vol. 369, p. 97.Google Scholar
  102. 102.
    Goldwasser, M.R., Rivas, M.E., Pietri, E., Perez-Zurita, M.J., Cubeiro, M.L., Gingembre, L., Leclercq, L., and Leclercq, G., Appl. Catal., A, 2003, vol. 255, p. 45.Google Scholar
  103. 103.
    Araujo, G.C., Lima, S.M., Assaf, J.M., Pena, M.A., Garcia Fierro J.L., and Rangel, M.D.C., Catal. Today, 2008, vol. 133–135, p. 129.CrossRefGoogle Scholar
  104. 104.
    Balat, H. and Kırtay, E., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7416.CrossRefGoogle Scholar
  105. 105.
    Baruah, R., Dixit, M., Basarkar, P., Parikh, D., and Bhargav, A., Renew. Sust. Energ. Rev., 2015, vol. 51, p. 1345.CrossRefGoogle Scholar
  106. 106.
    Chen, S.Q. and Liu, Y., Int. J. Hydrogen Energy, 2009, vol. 34, p. 4735.CrossRefGoogle Scholar
  107. 107.
    Chen, S.Q. and Wang, H., Liu Y., Int. J. Hydrogen Energy, 2009, vol. 34, p. 7995.CrossRefGoogle Scholar
  108. 108.
    Zhao, L., Wei, Y., Huang, Y., and Liu, Y., Catal. Today, 2016, vol. 259, p. 430.CrossRefGoogle Scholar
  109. 109.
    Wang, Z., Wang, H., and Liu, Y., RSC Adv., 2013, vol. 3, p. 10027.CrossRefGoogle Scholar
  110. 110.
    Huang, L., Zhang, F., Wang, N., Chen, R., and Hsu, A.T., Int. J. Hydrogen Energy, 2012, vol. 37, p. 1272.CrossRefGoogle Scholar
  111. 111.
    Wu, G., Li, S., Zhang, C., Wang, T., and Gong, J., Appl. Catal., B, 2014, vol. 144, p. 277.CrossRefGoogle Scholar
  112. 112.
    Surendar, M., Sagar, T.V., Raveendra, G., Ashwani Kumar, M., Lingaiah, N., Rama Rao, K.S., and Sai Prasad, P.S., Int. J. Hydrogen Energy, 2016, vol. 41, p. 2285.CrossRefGoogle Scholar
  113. 113.
    Chen, G., Yao, J., Liu, J., Yan, B., and Shan, R., Renewable Energy, 2016, vol. 91, p. 315.CrossRefGoogle Scholar
  114. 114.
    Mota, N., Galvan, M.C.A., Al-Zahrani, S.M., Navarro, R.M., and Fierro, J.L.G., Int. J. Hydrogen Energy, 2012, vol. 37, p. 7056.CrossRefGoogle Scholar
  115. 115.
    Urasaki, K., Tokunaga, K., Sekine, Y., Matsukata, M., and Kikuchi, E., Catal. Commun., 2008, vol. 9, p. 600.CrossRefGoogle Scholar
  116. 116.
    Chen, H., Yu, H., Peng, F., Yang, G., Wang, H., Yang, J., and Tang, Y., Chem. Eng. J., 2010, vol. 160, p. 333.CrossRefGoogle Scholar
  117. 117.
    Marinho, A.L.A., Rabelo-Neto, R.C., Noronha, F.B., and Mattos, L.V., Appl. Catal., A, 2016, vol. 520, p. 53.Google Scholar
  118. 118.
    Lin, K.-H., Wang, C.-B., and Chien, S.-H., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3226.CrossRefGoogle Scholar
  119. 119.
    Lima, S.M., Silva, A.M., Costa, L.O.O., Assaf, J.M., Jacobs, G., Davis, B.H., Mattos, L.V., and Noronha, F.B., Appl. Catal., A, 2010, vol. 377, p. 181.Google Scholar
  120. 120.
    Sadykov, V., Mezentseva, N., Fedorova, Yu., Lukashevich, A., Pelipenko, V., Kuzmin, V., Simonov, M., Ishchenko, A., Vostrikov, Z., Bobrova, L., Sadovskaya, E., Muzykantov, V., Zadesenets, A., Smorygo, O., Roger, A.C., and Parkhomenko, K., Catal. Today, 2015, vol. 251, p. 19.CrossRefGoogle Scholar
  121. 121.
    Martinelli, D.M.H., Melo, D.M.A., Pedrosa, A.M.G., Martinelli, A.E., Melo, M.A.F., and Batista, M.K.S., Mater. Sci. Appl., 2012, vol. 3, p. 363.Google Scholar
  122. 122.
    Ammendola, P., Cammisa, E., Lisi, L., and Ruoppolo, G., Ind. Eng. Chem. Res., 2012, vol. 51, p. 7475.CrossRefGoogle Scholar
  123. 123.
    Zeng, G.M., Shao, J.J., Gu, R.X., and Li, Y.D., Catal. Today, 2014, vol. 233, p. 31.CrossRefGoogle Scholar
  124. 124.
    Rivas, I., Alvarez, J., Pietri, E., Pe?rez-Zurita, M.J., and Goldwasser, M.R., Catal. Today, 2010, vol. 149, p. 388.CrossRefGoogle Scholar
  125. 125.
    Zhao, L., Hana, T., Wang, H., Zhang, L., and Liu, Y., Appl. Catal., B, 2016, vol. 187, p. 19.CrossRefGoogle Scholar
  126. 126.
    Lemonidou, A. and Vasalos, I.A., Appl. Catal., A, 2002, vol. 228, p. 227.Google Scholar
  127. 127.
    Koo, K., Roh, H-S., Seo, Y.T., Seo, D.J., Yoon, W.L., and Park, S.B., Appl. Catal., A, 2008, vol. 340, p. 183.Google Scholar
  128. 128.
    Xu, L., Wang, F., Chen, M., Fan, X., Yang, H., Nie, D., and Qi, L., J. CO2 Utili., 2017, vol. 18, p. 1.Google Scholar
  129. 129.
    Ma, H., Zeng, L., Tian, H., Li, D., Wang, X., Li, X., and Gong, J., Appl. Catal., B, 2016, vol. 181, p. 321.CrossRefGoogle Scholar
  130. 130.
    Sadykov, V., Chub, O., Chesalov, Yu., Mezentseva, N., Pavlova, S., Arapova, M., Rogov, V., Simonov, M., Roger, A.-C., Parkhomenko, K., and Van Veen, A., Top. Catal., 2016, vol. 59, p. 1332.CrossRefGoogle Scholar
  131. 131.
    Bobrova, L.N., Bobin, A.S., Mezentseva, N.V., Sadykov, V.A., Thybaut, J.W., and Marin, G.B., Appl. Catal., B, 2016, vol. 182, p. 513.CrossRefGoogle Scholar
  132. 132.
    Makarshin, L.L., Sadykov, V.A., Andreev, D.V., Gribovskii, A.G., Privezentsev, V.V., and Parmon, V.N., Fuel Process. Technol., 2015, vol. 131, p. 21.CrossRefGoogle Scholar
  133. 133.
    Ma, Y.H., Advanced Membrane Technology and Applications, New York: Wiley, 2009, p. 671.Google Scholar
  134. 134.
    Hedayati, A., Ph.D. Thesis, Universitat Politècnica de Catalunya BarcelonaTECH, Barcelona, 2016, p. 5.Google Scholar
  135. 135.
    Koch, R., López, E., Divins, N.J., Allué, M., Jossen, A., Riera, J., and Llorca, J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 5605.CrossRefGoogle Scholar
  136. 136.
    Yang, N.-T., Kathiraser, Y., and Kawi, S., Int. J. Hydrogen Energy, 2013, vol. 38, p. 4483.CrossRefGoogle Scholar
  137. 137.
    Yang, T., Shi, G.M., and Chung, T.-S., Adv. Energy Mater., 2012, vol. 2, p. 1358.CrossRefGoogle Scholar
  138. 138.
    Mercadelli, E., Montaleone, D., Gondolini, A., Pinasco, P., and Sanson, A., Ceram. Int., 2017, vol. 43, p. 8010.CrossRefGoogle Scholar
  139. 139.
    Sadykov, V.A., Pavlova, S.N., Kharlamova, T.S., Muzykantov, V.S., Uvarov, N.F., Okhlupin, Yu.S., Ishchenko, A.V., Bobin, A.S., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Krieger, T.A., Larina, T.V., Bulgakov, N.N., and Tapilin, V.M., et al., Perovskites and Their Nanocomposites with Fluorite-Like Oxides as Materials for Solid Oxide Fuel Cells Cathodes and Oxygen-Conducting Membranes: Mobility and Reactivity of the Surface, Bulk Oxygen as a Key Factor of Their Performance, in Perovskites: Structure, Properties and Uses, Borowski, M., Ed., New York: Nova Science, 2010, p. 67.Google Scholar
  140. 140.
    Magrasó, A. and Haugsrud, R., J. Mater. Chem. A, 2014, vol. 2, p. 12630.CrossRefGoogle Scholar
  141. 141.
    Escolástico, S., Solís, C., Haugsrud, R., Magrasó, A., and Serra, J.M., Int. J. Hydrogen Energy, 2017, vol. 42, p. 11392.CrossRefGoogle Scholar
  142. 142.
    Bobrova, L.N., Vernikovskaya, N.V., Kagyrmanova, A.P., Kashkin, V.N., and Zolotarskii, I.A., Application of Mathematical Modeling and Simulation to Study the Complexity of the Basic Chemical and Physical Phenomena in Catalytic Reactors, in Mathematical Modeling, Brennan, C.R., Ed., New York: Nova Science, 2012, p. 475.Google Scholar
  143. 143.
    Vernikovskaya, N.V., Chem. Eng. J., 2017, vol. 329, p. 15.CrossRefGoogle Scholar
  144. 144.
    Klenov, O.P. and Noskov, A.S., Primenenie vychislitel’noi gidrodinamiki pri modelirovanii kataliticheskikh reaktorov / Mikhail Gavrilovich Slin’ko - sluzhenie nauke i otchestvu (The Use of Computational Fluid Dynamics in Modeling of Catalytic Reactors / Mikhail Gavrilovich Slin’ko, Service to Science and Patronymic), Novosibirsk: Siberian Branch, Russian Academy of Sciences, 2014.Google Scholar
  145. 145.
    Klenov, O.P., Pokrovskaya, S.A., Chumakova, N.A., Pavlova, S.N., Sadykov, V.A., and Noskov, A.S. Catal. Today, 2009, vol. 144, no. 3–4, p. 258.CrossRefGoogle Scholar
  146. 146.
    Bobrova, L., Zolotarskii, I., Sadykov, V., Pavlova, S., Snegurenko, O., Tikhov, S., Korotkich, V., Kuznetsova, T., Sobyanin, V., and Parmon, V., Chem. Eng. Sci., 2005, vol. 107, p. 171.CrossRefGoogle Scholar
  147. 147.
    Bobrova, L., Zolotarsky, I., Sadykov, V., and Sobyanin, V., Int. J. Hydrogen Energy, 2007, vol. 32, no. 16, p. 3698.CrossRefGoogle Scholar
  148. 148.
    Marengo, S., Comotti, P., and Galli, G., Catal. Today, 2003, vol. 81, p. 205.CrossRefGoogle Scholar
  149. 149.
    Vagin, D., Bobrova, L., Soloveychik, Yu., Sadykov, V., and Parmon, V., Russian-Spain International Conference, Nanostructured Catalysts and Catalytic Processes for the Innovative Energetics and Sustainable Development, Print-CD vol., 2011, p. 71.Google Scholar
  150. 150.
    Bobrova, L., Andreev, D., Ivanov, E., Mezentseva, N., Simonov, M., Makarshin, L., Gribovskiy, A., and Sadykov, V., Catalysts, 2017, vol. 7, p. 1.CrossRefGoogle Scholar
  151. 151.
    Sadykov, V., Bobrova, L., Vostrikov, Z., Vernikovskaya, N., and Mezentseva, N., XII Eur. Cong. on Cat. (EuropaCat-XII), Kazan, 2015, p. 224.Google Scholar
  152. 152.
    Kechagiopoulos, P.N., Thybaut, J.W., Bobrova, L.N., Sadykov, V.A., and Marin, G.B., 22nd Int. Symp. on Chem. Reac. Eng. (ISCRE 22), Maastricht, 2012, p. 816.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Sadykov
    • 1
    • 2
    Email author
  • M. N. Simonov
    • 1
    • 2
  • Yu. N. Bespalko
    • 1
    • 2
  • L. N. Bobrova
    • 1
  • N. F. Eremeev
    • 1
  • M. V. Arapova
    • 1
  • E. A. Smal’
    • 1
  • N. V. Mezentseva
    • 1
    • 2
  • S. N. Pavlova
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations