Kinetics and Catalysis

, Volume 60, Issue 1, pp 96–105 | Cite as

Effects of Alkali Element Doping and Synthesis Conditions on the Genesis of the Phase Composition of Alumina–Chromium Catalysts

  • V. V. Chesnokov
  • N. N. BoldyrevaEmail author
  • L. S. Dovlitova
  • D. A. Zyuzin
  • V. N. Parmon


The influence of modifying additives and synthesis conditions on the genesis of the phase composition of alumina–chromium catalysts was studied by differential dissolution (DD) and X-ray diffraction (XRD) analysis. The salts of potassium (KNO3) and lithium (LiCl) were added as additives. It was found that the individual nature of the additives affected the formation of phases. Although potassium and lithium cations occur in the same group of the periodic system, they differently react with a phase of γ-Al2O3 in the support: lithium forms a LixAl1 solid solution with the crystallized finely dispersed γ-Al2O3 species, whereas potassium mainly remains on the surface of the finely dispersed Al2O3 species and partially forms potassium aluminate. The interaction of lithium cations with the active component Cr(VI) of the catalyst leads to the formation of lithium chromate analogously to the reaction of the potassium cation with \({\text{CrO}}_{4}^{{2 - }}.\) However, a portion of lithium cations is introduced into the structure of the substitution solid solution of Cr(III) in γ‑Al2O3 to form addition solid solutions (Al1Crx1– x2Liy1 –y2).


alumina–chromium catalyst modifying additives differential dissolution method stoichiograms 



This work was performed at the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences in accordance with a state contract (project no. AAAA-A17-117041710084-2).


  1. 1.
    Sanfilippo, D. and Miracca, I., Catal. Today, 2006, vol. 111, nos. 1–2, p. 133.CrossRefGoogle Scholar
  2. 2.
    Weckhuysen, B. and Schoonheydt, R., Catal. Today, 1999, no. 51, p. 223.Google Scholar
  3. 3.
    Pakhomov, N.A., Promyshlennyi kataliz v lektsiyakh (Industrial Catalysis in Lectures), Moscow: Kalvis, 2006, no. 6, p. 53.Google Scholar
  4. 4.
    Pakhomov, N.A., Parakhin, O.A., Nemykina, E.I., Danilevich, V.V., Chernov, M.P., and Pecherichenko, V.A., Kataliz v Promyshlennosti, 2012, no. 3, p. 65.Google Scholar
  5. 5.
    Nemykina, E.I., Pakhomov, N.A., Danilevich, V.V., Rogov, V.A., Zaikovskii, V.I., Larina, T.V., and Molchanov, V.V., Kinet. Catal., 2010, vol. 51, no. 6, p. 898.CrossRefGoogle Scholar
  6. 6.
    Pakhomov, N.A., in Promyshlennyi kataliz v lektsiyakh (Industrial Catalysis in Lectures), Moscow: Kalvis, 2005, no. 6, p. 87.Google Scholar
  7. 7.
    Oksidy titana, tseriya, tsirkoniya, ittriya, alyuminiya. Svoistva, primenenie i metody polucheniya (Titanium, cerium, zirconium, yttrium, aluminum oxides. Properties, application and methods of obtaining) Parmon, V.N., Ed., Novosibirsk: Izdatel’stvo Sibirskogo otdeleniya RAN, 2010, p. 170.Google Scholar
  8. 8.
    Nemykina, E.I., Cand. Sci. (Chem.) Dissertation, Novosibirsk: IK RAN, 2012.Google Scholar
  9. 9.
    Poluektov, N.S., Meshkova, S.B., and Poluektova, E.N., in Analiticheskaya khimiya litiya (Analytical Chemistry of Lithium), Moscow: Nauka, 1975, p. 11.Google Scholar
  10. 10.
    Yur’eva, T.M., Boreskov, G.K., Popovskii, V.V., Chigrina, V.A., and Egorova, L.S., Kinet. Katal., 1971, vol. 12, no. 1, p. 140.Google Scholar
  11. 11.
    Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakova, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, p. 153.CrossRefGoogle Scholar
  12. 12.
    Poole, Ch. and MacIver, D., Adv. Catal., 1967, no. 17, p. 224.Google Scholar
  13. 13.
    Malakhov, V.V. and Vasil’eva, I.G., Russ. Chem. Rev., 2008, vol. 77, no.4 p. 351.CrossRefGoogle Scholar
  14. 14.
    Malakhov, V.V., Boldyreva, N.N., Vlasov, A.A., and Dovlitova, L.S., J. Anal. Chem., 2011, vol. 66, no. 5, p. 458.CrossRefGoogle Scholar
  15. 15.
    Malakhov, V.V. and Vlasov, A.A., J. Anal. Chem., 2011, vol. 66, no. 3, p. 262.CrossRefGoogle Scholar
  16. 16.
    Boldyreva, N.N. and Kuptsov, A.V., Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 10, p. 12Google Scholar
  17. 17.
    Boldyreva, N.N. and Kuptsov, A.V., Zavod. Lab., Diagn. Mater., 2017, vol. 83, no. 7, p. 7.Google Scholar
  18. 18.
    Plyasova, L.M., Vvedenie v rentgenografiyu katalizatorov (Introduction to X-ray Diffraction of Catalysts), Novosibirsk: Institut kataliza im. G.K. Boreskova, 2010, p. 30.Google Scholar
  19. 19.
    Isupov, V.P., Gabuda, S.P., Kozlova, S.G., and Chupakhina, L.E., Zh. Strukt. Khim., 1998, vol. 39, no. 3, p. 448.Google Scholar
  20. 20.
    Database Inorganic Crystal Structure Database (ICSD), Copyright 2003–2011. Fachinformationszentrum (FIZ) Karlsruhe.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Chesnokov
    • 1
  • N. N. Boldyreva
    • 1
    Email author
  • L. S. Dovlitova
    • 1
  • D. A. Zyuzin
    • 1
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations