Advertisement

Kinetics and Catalysis

, Volume 59, Issue 6, pp 810–819 | Cite as

The Reasons for Nonlinear Phenomena in Oxidation of Methane over Nickel

  • A. A. Saraev
  • Z. S. Vinokurov
  • A. N. Shmakov
  • V. V. KaichevEmail author
  • V. I. Bukhtiyarov
Article
  • 10 Downloads

Abstract

The catalytic oxidation of methane over nickel foil is studied. It is shown that, under the oxygen-lean conditions in the regime of a flow-type reactor, nonlinear phenomena can appear in the form of self-sustained oscillations of the reaction rate and the catalyst temperature. To determine the reasons for self-sustained oscillations, X-ray diffraction and mass spectrometry in the operandо mode were used. It was found that the appearance of oscillations in the methane oxidation is due to periodical oxidation–reduction of the surface layer of nickel foil; metallic nickel has a higher catalytic activity than NiO. The oscillations of the catalyst temperature are determined by the occurrence of exothermic and endothermic processes associated with the reduction of nickel oxide and methane oxidation on the surface of metallic nickel.

Keywords:

methane oxidation nickel heterogeneous catalysis self-oscillations reaction mechanism 

Notes

ACKNOWLEDGMENTS

This work was performed within the framework of the budget project (АААА-А17-117041710078-1) for Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences. In situ/operandо XRD studied were carried out using the equipment of the Shared Use Center Siberian Center for Synchrotron and Terahertz Radiation at Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk.

REFERENCES

  1. 1.
    Ertl, G., Adv. Catal., 1990, vol. 37, p. 213.Google Scholar
  2. 2.
    Slinko, M.M. and Jaeger, N.I., Oscillating Heterogeneous Catalytic Systems, Elsevier, 1994, vol. 86, p. 1.CrossRefGoogle Scholar
  3. 3.
    Imbihl, R. and Ertl, G., Chem. Rev., 1995, vol. 95, p. 697.CrossRefGoogle Scholar
  4. 4.
    Matveev, A.V., Kaichev, V.V., Saraev, A.A., Gorodetskii, V.V., Knop-Gericke, A., Bukhtiyarov, V.I., and Nieuwenhuys, B.E., Catal. Today, 2015, vol. 244, p. 29.CrossRefGoogle Scholar
  5. 5.
    Kaichev, V.V., Saraev, A.A., Matveev, A.V., Dubinin, Y.V., Knop-Gericke, A., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2018, vol. 122, p. 4315.CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Lee, C., Hayward, D., and Mingos, D., Catal. Today, 2005, vol. 105, p., 283.Google Scholar
  7. 7.
    Hendriksen, B.L.M., Ackermann, M.D., van Rijn, R., Stoltz, D., Popa, I., Balmes, O., Resta, A., Wermeille, D., Felici, R., Ferrer, S., and Frenken, J.W.M., Nat. Chem., 2010, vol. 2, p. 730.CrossRefGoogle Scholar
  8. 8.
    Kaichev, V.V., Gladky, A.Y., Prosvirin, I.P., Saraev, A.A., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Surf. Sci., 2013, vol. 609, p. 113.CrossRefGoogle Scholar
  9. 9.
    Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., and Helveg, S., Nat. Mater., 2014, vol. 13, p. 884.CrossRefGoogle Scholar
  10. 10.
    Bychkov, V.Y., Tyulenin, Y.P., Gorenberg, A.Y., Sokolov, S., and Korchak, V.N., Appl. Catal., A, 2014, vol. 485, p. 1.Google Scholar
  11. 11.
    Kaichev, V.V., Teschner, D., Saraev, A.A., Kosolobov, S.S., Gladky, A.Y., Prosvirin, I.P., Rudina, N.A., Ayupov, A.B., Blume, R., Hävecker, M., Knop-Gericke, A., Schlögl, R., Latyshev, A.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 334, p. 23.CrossRefGoogle Scholar
  12. 12.
    Gorodetskii, V., Lauterbach, J., Rotermund, H.H., Block, J.H., and Ertl, G., Nature, 1994, vol. 370, p. 276.CrossRefGoogle Scholar
  13. 13.
    Kim, M., Bertram, M., Pollmann, M., Oertzen, A.V., Mikhailov, A.S., Rotermund, H.H., and Ertl, G., Science, 2001, vol. 292, p. 1357.CrossRefGoogle Scholar
  14. 14.
    Kaichev, V.V., Saraev, A.A., Gladky, A.Y., Prosvirin, I.P., Blume, R., Teschner, D., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Phys. Rev. Lett., 2017, vol. 119, p. 026001.CrossRefGoogle Scholar
  15. 15.
    Zhdanov, V.P., Phys. Rev. E, 1999, vol. 59, p. 6292.CrossRefGoogle Scholar
  16. 16.
    Saraev, A.A., Kaichev, V.V., Bukhtiyarov, V.I., and Kosolobov, S.S., Kinet. Catal., 2015, vol. 56, vol. 5, p. 598.Google Scholar
  17. 17.
    Knop-Gericke, A., Kleimenov, E., Hävecker, M., Blume, R., Teschner, D., Zafeiratos, S., Schlögl, R., Bukhtiyarov, V.I., Kaichev, V.V., Prosvirin, I.P., Nizovskii, A.I., Bluhm, H., Barinov, A., Dudin, P., and Kiskinova, M., Adv. Catal., 2009, vol. 52, p. 213.Google Scholar
  18. 18.
    Bulavchenko, O.A., Vinokurov, Z.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Tsybulya, S.V., Saraev, A.A., and Kaichev, V.V., Dalton Trans., 2015, vol. 44, p. 15499.CrossRefGoogle Scholar
  19. 19.
    Bulavchenko, O.A., Venediktova, O.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Saraev, A.A., Kaichev, V.V., and Tsybulya, S.V., RSC Adv., 2018, vol. 8, p. 11598.CrossRefGoogle Scholar
  20. 20.
    Aulchenko, V.M., Evdokov, O.V., Kutovenko, V.D., Pirogov, B.Y., Sharafutdinov, M.R., Titov, V.M., Tolochko, B.P., Vasiljev, A.V., Zhogin, I.A., and Zhulanov, V.V., Nucl. Instrum. Methods Phys. Res., Sect. A., 2009, vol. 603, p. 76.Google Scholar
  21. 21.
    Fytyk 1.2.9. http://www.fityk.nieto.pl.Google Scholar
  22. 22.
    Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2002, vol. 83, p. 149.CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2003, vol. 86, p. 235.CrossRefGoogle Scholar
  24. 24.
    Bychkov, V.Y., Tyulenin, Y.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal., A, 2006, vol. 304, p., 21.Google Scholar
  25. 25.
    Yu, J., Rosso, K.M., and Bruemmer, S.M., J. Phys. Chem. C, 2012, vol. 116, p. 1948.CrossRefGoogle Scholar
  26. 26.
    Bychkov, V.Y., Tulenin, Y.P., Slinko, M.M., Khudorozhkov, A.K., Bukhtiyarov, V.I., Sokolov, S., and Korchak, V.N., Appl. Catal., A, 2016, vol. 522, p. 40.Google Scholar
  27. 27.
    Stötzel, J., Frahm, R., Kimmerle, B., Nachtegaal, M., and Grunwaldt, J.-D., J. Phys. Chem. C, 2012, vol. 116, p. 599.CrossRefGoogle Scholar
  28. 28.
    Weaver, J.F., Chem. Rev., 2013, vol. 113, p. 4164.CrossRefGoogle Scholar
  29. 29.
    Martin, N.M., Van den Bossche, M., Hellman, A., Grönbeck, H., Hakanoglu, C., Gustafson, J., Blomberg, S., Johansson, N., Liu, Z., Axnanda, S., Weaver, J.F., and Lundgren, E., ACS Catal., 2014, vol. 4, p. 3330.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Saraev
    • 1
    • 2
  • Z. S. Vinokurov
    • 1
    • 3
  • A. N. Shmakov
    • 1
    • 2
    • 3
  • V. V. Kaichev
    • 1
    • 2
    Email author
  • V. I. Bukhtiyarov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations