Advertisement

Kinetics and Catalysis

, Volume 59, Issue 5, pp 653–662 | Cite as

An XPS and STM Study of Oxidized Platinum Particles Formed by the Interaction between Pt/HOPG with NO2

  • M. Yu. SmirnovEmail author
  • E. I. Vovk
  • A. V. Nartova
  • A. V. Kalinkin
  • V. I. Bukhtiyarov
Article
  • 52 Downloads

Abstract

X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.

Keywords

platinum highly oriented pyrolytic graphite NO2 X-ray photoelectron spectroscopy (XPS) scanning tunneling microscopy (STM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, M.S., Cai, Y., Yan, Z., Gath, K.K., Axnanda, S., and Goodman, D.W., Surf. Sci., 2007, vol. 601, p. 5326.CrossRefGoogle Scholar
  2. 2.
    Hendriksen, B.L.M. and Frenken, J.W.M., Phys. Rev. Lett., 2002, vol. 89, p. 046101.CrossRefPubMedGoogle Scholar
  3. 3.
    Ackermann, M.D., Pedersen, T.M., Hendriksen, B.L.M., Robach, O., Bobaru, S.C., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S., and Frenken, J.W.M., Phys. Rev. Lett., 2005, vol. 95, p. 255505.CrossRefPubMedGoogle Scholar
  4. 4.
    Alayon, E.M.C., Singh, J., Nachtegaal, M., Harfouche, M., and van Bokhoven, J.A., J. Catal., 2009, vol. 263, p. 228.CrossRefGoogle Scholar
  5. 5.
    Singh, J., Nachtegaal, M., Alayon, E.M.C., Stotzel, J., and van Bokhoven, J.A., ChemCatChem, 2010, vol. 2, p. 653.CrossRefGoogle Scholar
  6. 6.
    Porsgaard, S., Ono, L.K., Zeuthen, H., Knudsen, J., Schnadt, J., Merte, L.R., Chevallier, J., Helveg, S., Salmeron, M., Wendt, S., and Besenbacher, F., ChemPhysChem, 2013, vol. 14, p. 1553.CrossRefPubMedGoogle Scholar
  7. 7.
    Boubnov, A., Dahl, S., Johnson, E., Molina, A.P., Simonsen, S.B., Cano, F.M., Helveg, S., Lemus-Yegres, L.J., and Grunwaldt, J.-D., Appl. Catal., B, 2012, vol. 126, p. 315.CrossRefGoogle Scholar
  8. 8.
    Kim, G.J., Kwon, D.W., and Hong, S.C., J. Phys. Chem. C, 2016, vol. 120, p. 17996.CrossRefGoogle Scholar
  9. 9.
    Yu, X., Wang, Y., Kim, A., and Kim, Y.K., Chem. Phys. Lett., 2017, vol. 685, p. 282.CrossRefGoogle Scholar
  10. 10.
    Olsson, L. and Fridell, E., J. Catal., 2002, vol. 210, p. 340.CrossRefGoogle Scholar
  11. 11.
    Bhatia, D., McCabe, R.W., Harold, M.P., and Balakotaiah, V., J. Catal., 2009, vol. 266, p. 106.CrossRefGoogle Scholar
  12. 12.
    Mulla, S.S., Chen, N., Cumaranatunge, L., Blau, G.E., Zemlyanov, D.Y., Delgass, W.N., Epling, W.S., and Ribeiro, F.H., J. Catal., 2006, vol. 241, p. 389.CrossRefGoogle Scholar
  13. 13.
    Mulla, S.S., Chen, N., Delgass, W.N., Epling, W.S., and Ribeiro, F.H., Catal. Lett., 2005, vol. 100, p. 267.CrossRefGoogle Scholar
  14. 14.
    Pazmiño, J.H., Miller, J.T., Mulla, S.S., Delgass, W.N., and Ribeiro, F.H., J. Catal., 2011, vol. 282, p. 13.CrossRefGoogle Scholar
  15. 15.
    Markusse, A.P., Kuster, B.F.M., Koningsberger, D.C., and Marin, G.B., Catal. Lett., 1998, vol. 55, p. 141.CrossRefGoogle Scholar
  16. 16.
    Savinova, E.R., Lebedeva, N.P., Simonov, P.A., and Kryukova, G.N., Russ. J. Electrochem., 2000, vol. 36, p. 952.CrossRefGoogle Scholar
  17. 17.
    Antolini, E., J. Mater. Sci., 2003, vol. 38, p. 2995.CrossRefGoogle Scholar
  18. 18.
    Gao, J. and Guo, Q., Appl. Surf. Sci., 2012, vol. 258, p. 5412.CrossRefGoogle Scholar
  19. 19.
    Fiordaliso, E.M., Murphy, S., Nielsen, R.M., Dahl, S., Chorkendorff I., Surf. Sci., 2012, vol. 606, p. 263.CrossRefGoogle Scholar
  20. 20.
    Nakamura, J. and Kondo, T., Top. Catal., 2013, vol. 56, p. 1560.CrossRefGoogle Scholar
  21. 21.
    Hsieh, S.H., Hsu, M.C., Liu, W.L., and Chen, W.J., Appl. Surf. Sci., 2013, vol. 277, p. 223.CrossRefGoogle Scholar
  22. 22.
    Xia, G., Huang, C., and Wang, Y., Int. J. Hydrogen Energy, 2013, vol. 38, p. 13754.CrossRefGoogle Scholar
  23. 23.
    Gómez, J.J.A. and García, S.G., Surf. Interface Anal., 2015, vol. 47, p. 1127.CrossRefGoogle Scholar
  24. 24.
    Loof, P., Stenbom, B., Norden, H., and Kasemo, B., J. Catal., 1993, vol. 144, p. 60.CrossRefGoogle Scholar
  25. 25.
    Nagai, Y., Dohmae, K., Ikeda, Y., Takagi, N., Tanabe, T., Hara, N., Guilera, G., Pascarelli, S., Newton, M.A., Kuno, O., Jiang, H., Shinjoh, H., and Matsumoto, S., Angew. Chem. Int. Ed., 2008, vol. 47, p. 9303.CrossRefGoogle Scholar
  26. 26.
    Kalinkin, A.V., Sorokin, A.M., Smirnov, M.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2014, vol. 55, p. 354.CrossRefGoogle Scholar
  27. 27.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray photoelectron spectroscopy, Perkin Elmer: Eden Prairie, MN, 1992.Google Scholar
  28. 28.
    Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J., and Baro, A.M., Rev. Sci. Instrum., 2007, vol. 78, p. 013705.CrossRefPubMedGoogle Scholar
  29. 29.
    Mason, M.G., Phys. Rev. B, 1983, vol. 27, p. 748.CrossRefGoogle Scholar
  30. 30.
    Ono, L.K., Sudfeld, D., and Cuenya, B.R., Surf. Sci., 2006, vol. 600, p. 5041.CrossRefGoogle Scholar
  31. 31.
    Smirnov, M.Y., Kalinkin, A.V., Vovk, E.I., and Bukhtiyarov, V.I., J. Struct. Chem., 2016, vol. 57, p. 1127.CrossRefGoogle Scholar
  32. 32.
    Vovk, E.I., Kalinkin, A.V., Smirnov, M.Yu., Klembovskii, I.O., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2017, vol. 121, p. 17297.CrossRefGoogle Scholar
  33. 33.
    Peuckert, M. and Bonzel, H.P., Surf. Sci., 1984, vol. 145, p. 239.CrossRefGoogle Scholar
  34. 34.
    Kaushik, V.K., Z. Phys. Chem., 1991, vol. 173, p. 105.CrossRefGoogle Scholar
  35. 35.
    Abe, Y., Yanagisawa, H., and Sasaki, K., Jpn. J. Appl. Phys., 1998, vol. 37, p. 4482.CrossRefGoogle Scholar
  36. 36.
    Pitchon, V. and Fritz, A., J. Catal., 1999, vol. 186, p. 64.CrossRefGoogle Scholar
  37. 37.
    Després, J., Elsener, M., Koebel, M., Kröcher, O., Schnyder, B., and Wokaun, A., Appl. Catal., B, 2004, vol. 50, p. 73.CrossRefGoogle Scholar
  38. 38.
    Ono, L.K., Yuan, B., Heinrich, H., and Cuenya, B.R., J. Phys. Chem. C, 2010, vol. 114, p. 22119.CrossRefGoogle Scholar
  39. 39.
    Ono, L.K., Croy, J.R., Heinrich, H., and Cuenya, B.R., J. Phys. Chem. C, 2011, vol. 115, p. 16856.CrossRefGoogle Scholar
  40. 40.
    Smirnov, M.Yu., Kalinkin, A.V., and Bukhtiyarov, V.I., J. Struct. Chem., 2007, vol. 48, p. 1053.CrossRefGoogle Scholar
  41. 41.
    Smirnov, M.Yu., Vovk, E.I., Kalinkin, A.V., Pashis, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2012, vol. 53, p. 117.CrossRefGoogle Scholar
  42. 42.
    Smirnov, M.Yu., Kalinkin, A.V., Vovk, E.I., and Bukhtiyarov, V.I., Kinet. Catal., 2015. T. 56. C. 801.CrossRefGoogle Scholar
  43. 43.
    Kalinkin, A.V., Smirnov, M.Y., and Bukhtiyarov, V.I., Kinet. Catal., 2016, vol. 57, p. 826.CrossRefGoogle Scholar
  44. 44.
    McCabe, R.W., Wong, C., and Woo, H.S., J. Catal., 1988, vol. 114, p. 354.CrossRefGoogle Scholar
  45. 45.
    Kalinkin, A.V., Smirnov, M.Yu., Nizovskii, A.I., and Bukhtiyarov, V.I., J. Electron Spectrosc. Relat. Phenom., 2010, vol. 177, p. 15.CrossRefGoogle Scholar
  46. 46.
    Smirnov, M.Yu., Kalinkin, A.V., Vovk, E.I., Simonov, P.A., Gerasimov, E.Yu., Sorokin, A.M., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2018, vol. 428, p. 972.CrossRefGoogle Scholar
  47. 47.
    Langley, L.A., Villanueva, D.E., and Fairbrother, D.H., Chem. Mater., 2006, vol. 18, p. 169.CrossRefGoogle Scholar
  48. 48.
    Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2011, vol. 1, p. 1432.CrossRefGoogle Scholar
  49. 49.
    Nartova, A.V., Kvon, R.I., Vovk, E.I., and Bukhtiyarov, V.I., Bull. Russ. Acad. Sci.: Phys., 2005, vol. 69, p. 600.Google Scholar
  50. 50.
    Nartova, A.V., Gharachorlou, A., Bukhtiyarov, A.V., Kvon, R.I., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2017, vol. 401, p. 341.CrossRefGoogle Scholar
  51. 51.
    Shinotsuka, H., Tanuma, S., Powell, C.J., and Penn, D.R., Surf. Interf. Anal., 2015, vol. 47, p. 871.CrossRefGoogle Scholar
  52. 52.
    Katrib, A., J. Electron Spectrosc. Relat. Phenom., 1980, vol. 18, p. 275.CrossRefGoogle Scholar
  53. 53.
    Aktary, M., Lee, C.E., Xing, Y., Bergens, S.H., and McDermott, M.T., Langmuir, 2000, vol. 16, p. 5837.CrossRefGoogle Scholar
  54. 54.
    Smirnov, M.Yu., Kalinkin, A.V., Bukhtiyarov, A.V., Prosvirin, I.P., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2016, vol. 120, p. 10419.CrossRefGoogle Scholar
  55. 55.
    Hejral, U., Vlad, A., Nolte, P., and Stierle, A., J. Phys. Chem. C, 2013, vol. 117, p. 19955.CrossRefGoogle Scholar
  56. 56.
    Wyrzgol, S.A., Schafer, S., Lee, S., Lee, B., Di Vece, M., Li, X., Seifert, S., Winans, R.E., Stutzmann, M., Lercher, J.A., and Vajdaz, S., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 5585.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Smirnov
    • 1
    Email author
  • E. I. Vovk
    • 1
  • A. V. Nartova
    • 1
    • 2
  • A. V. Kalinkin
    • 1
  • V. I. Bukhtiyarov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations