Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support

  • 57 Accesses

  • 3 Citations

Abstract

The effect of the support on the properties of copper catalysts supported on γ-Al2O3, SiO2, and TiO2–SiO2 with a ~5 wt % Cu content was studied in the one-pot synthesis of N-heptyl-p-toluidine from p-nitrotoluene and n-heptanal. The catalysts were characterized by elemental analysis, X-ray diffraction analysis, transmission electron microscopy, temperature-programmed reduction, and low-temperature nitrogen adsorption. The reaction was carried out in a flow reactor with the use of molecular hydrogen as a reducing agent. It was established that the nature of the support exerts a profound effect on the yield of the target secondary amine; in this case, 5%Cu/Al2O3 was found the most active catalyst. A combination of high catalyst activity in the hydrogenation of a nitro group to an amino group with the presence of acid sites, which facilitate imine formation as a result of the interaction of n-heptanal with p-toluidine, on the catalyst surface is necessary for reaching the greatest yield of N-heptyl-p-toluidine. The study of reaction mechanism on the 5%Cu/Al2O3 catalyst showed that p-nitrotoluene inhibits the hydrogenation of n-heptanal, and aldehyde hydrogenation into alcohol begins only after the conversion of the major portion of p-nitrotoluene as a result of the selective adsorption of the nitroarene under the conditions of the simultaneous presence of p-nitrotoluene and n-heptanal in the reaction mixture.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Salvatore, R.N., Yoon, C.H., and Jung, K.W., Tetrahedron, 2001, vol. 57, p. 7785.

  2. 2.

    Blaser, H.-U., Steiner, H., and Studer, M., Chem-CatChem, 2009, vol. 1, p. 210.

  3. 3.

    Roundhill, D.M., Chem. Rev., 1992, vol. 92, p. 1.

  4. 4.

    Ananikov, V.P., Khemchyan, L.L., Ivanova, Y.V., Dilman, A.D., Levin, V.V., Stakheev, A.Y., Turova, O.V., Mashkovsky, I.S., Terent’ev, A.O., Krylov, I.B., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Romanenko, A.V., Simonov, P.A., Bukhtiyarova, G.A., Kop-tyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Vatsadze, S.Z., et al., Rus. Chem. Rev., 2014, vol. 83, no. 10, p. 885.

  5. 5.

    Shimizu, K., Catal. Sci. Technol., 2015, vol. 5, p. 1412.

  6. 6.

    Climent, M.J., Corma, A., and Iborra, S., Chem. Rev., 2011, vol. 111, p. 1072.

  7. 7.

    Hu, L., Cao, X., Ge, D., Hong, H., Guo, Z., Chen, L., Sun, X., Tang, J., Zheng, J., Lu, J., and Gu, H., Chem. Eur. J., 2011, vol. 17, p. 14283.

  8. 8.

    Li, L., Niu, Z., Cai, S., Zhi, Y., Li, H., Rong, H., Liu, L., He, W., and Li, Y., Chem. Commun., 2013, vol. 49, p. 6843.

  9. 9.

    Cirujano, F.G., Leyva-Perez, A., Corma, A., and Llabresi Xamena, F.X., ChemCatChem, 2013, vol. 5, p. 538.

  10. 10.

    Yamane, Y., Liu, X., Hamasaki, A., Ishida, T., Haruta, M., Yokoyama, T., and Tokunaga, M., Org. Lett., 2009, vol. 11, p. 5162.

  11. 11.

    Sydnes, M.O. and Isobe, M., Tetrahedron Lett., 2008, vol. 49, p. 1199.

  12. 12.

    Dell’Anna, M.M., Mastrorilli, P., Rizzuti, A., and Leonelli, C., Appl. Catal., A, 2011, vol. 401, p. 134.

  13. 13.

    Sreedhar, B., Reddy, P.S., and Devi, D.K., Org. Chem., 2009, vol. 74, p. 8806.

  14. 14.

    Wei, S., Dong, Z., Ma, Z., Sun, J., and Ma, J., Catal. Commun., 2013, vol. 30, p. 40.

  15. 15.

    Zhou, J., Dong, Z., Wang, P., Shi, Z., Zhou, X., and Li, R., J. Mol. Catal. A: Chem., 2014, vol. 382, p. 15.

  16. 16.

    Santos, L.L., Serna, P., and Corma, A., Chem. Eur. J., 2009, vol. 15, p. 8196.

  17. 17.

    Pintado-Sierra, M., Rasero-Almansa, A.M., Corma, A., Iglesias, M., and Sanchez, F., J. Catal., 2013, vol. 299, p. 137.

  18. 18.

    Artiukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A., Zaytsev, S.Yu., Pluysnin, P.E., Shubin, Yu.V., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2015, vol. 5, p. 4741.

  19. 19.

    Nuzhdin, A.L., Artiukha, E.A., Bukhtiyarova, G.A., Zaytsev, S.Yu., Plyusnin, P.E., Shubin, Yu.V., and Bukhtiyarov, V.I., RSC Adv., 2016, vol. 6, p. 88366.

  20. 20.

    Artiukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A., and Bukhtiyarov, V.I., RSC Adv., 2017, vol. 7, p. 45856.

  21. 21.

    Nuzhdin, A.L., Artiukha, E.A., Bukhtiyarova, G.A., Derevyannikova, E.A., and Bukhtiyarov, V.I., Catal. Commun., 2017, vol. 102, p. 108.

  22. 22.

    Stemmler, T., Surkus, A.-E., Pohl, M.-M., Junge, K., and Beller, M., ChemSusChem, 2014, vol. 7, p. 3012.

  23. 23.

    Stemmler, T., Westerhaus, F.A., Surkus, A.-E., Pohl, M.-M., Junge, K., and Beller, M., Green Chem., 2014, vol. 16, p. 4535.

  24. 24.

    Cui, X., Liang, K., Tian, M., Zhu, Y., Ma, J., and Dong, Z., J. Colloid Interface Sci., 2017, vol. 501, p. 231.

  25. 25.

    Jiang, L., Zhou, P., Zhang, Z., Chi, Q., and Jin, S., New J. Chem., 2017, vol. 41, p. 11991.

  26. 26.

    Wiles, C. and Watts, P., Green Chem., 2014, vol. 16, p. 55.

  27. 27.

    Irfan, M., Glasnov, T.N., and Kappe, C.O., ChemSus-Chem, 2011, vol. 4, p. 300.

  28. 28.

    TOPAS 2009 Bruker AXS, 4.2 Ed., 1999.

  29. 29.

    Nuzhdin, A.L., Moroz, B.L., Bukhtiyarova, G.A., Reshetnikov, S.I., Pyrjaev, P.A., Aleksandrov, P.V., and Bukhtiyarov, V.I., ChemPlusChem, 2015, vol. 80, p. 1741.

  30. 30.

    Downing, R.S., Kunkeler, P.J., and van Bekkum, H., Catal. Today, 1997, vol. 37, p. 121.

  31. 31.

    Shimizu, K.I., Miyamoto, Y., Kawasaki, T., Tanji, T., Tai, Y., and Satsuma, A., J. Phys. Chem. C, 2009, vol. 113, p. 17803.

  32. 32.

    Corma, A., Serna, P., Concepcion, P., and Calvino, J.J., J. Am. Chem. Soc., 2008, vol. 130, p. 8748.

  33. 33.

    Boronat, M., Concepción, P., Corma, A., González, S., Illas, F., and Serna, P., J. Am. Chem. Soc., 2007, vol. 129, p. 16230.

  34. 34.

    Serna, P., Boronat, M., and Corma, A., Top. Catal., 2011, vol. 54, p. 439.

  35. 35.

    Prins, R., Chem. Rev., 2012, vol. 112, p. 2714.

Download references

Author information

Correspondence to A. L. Nuzhdin.

Additional information

Original Russian Text © E.A. Artyukha, A.L. Nuzhdin, G.A. Bukhtiyarova, E.A. Derevyannikova, E.Yu. Gerasimov, A.Yu. Gladkii, V.I. Bukhtiyarov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 5, pp. 583–590.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artyukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A. et al. One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. Kinet Catal 59, 593–600 (2018). https://doi.org/10.1134/S0023158418050014

Download citation

Keywords

  • one-stage synthesis
  • secondary amines
  • nitroarenes
  • aldehydes
  • flow reactor
  • molecular hydrogen
  • supported copper catalysts
  • support effect