Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 444–449 | Cite as

Hydrogenation of Dicyclopentadiene in the Presence of a Nickel Catalyst Supported onto a Cation Exchanger in a Flow-Type Reactor

  • Yu. V. Popov
  • V. M. Mokhov
  • D. N. Nebykov
  • S. E. Latyshova
  • K. V. Shcherbakova
  • A. O. Panov
Article
  • 5 Downloads

Abstract

The process of dicyclopentadiene hydrogenation in the gas–liquid–solid catalyst system with a catalyst of nickel nanoparticles supported onto a Purolite CT-175 cation exchange resin was studied. The surface structure of the catalyst and the kinetics of the dicyclopentadiene hydrogenation process were examined. Optimum conditions were found for the production of endo-tetrahydrodicyclopentadiene and the simultaneous production of endo-tetrahydrodicyclopentadiene and 5,6-dihydrodicyclopentadiene at atmospheric pressure.

Keywords

hydrogenation dicyclopentadiene nanosized nickel catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Claus, M., Claus, E., Claus, P., Hönicke, D., Födisch, R., and Olson, M., Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2016, p. 1. doi 10.1002/14356007.a08_227.pub2CrossRefGoogle Scholar
  2. 2.
    Hao, M., Yang, B., Wang, H., Liu, G., Qi, S., Yang, J., Li, Ch., and Lv, J., J. Phys. Chem. A, 2010, vol. 114, p. 3811.CrossRefGoogle Scholar
  3. 3.
    Liu, G., Mi, Z., Wang, L., and Zhang, X., Ind. Eng. Chem. Res., 2005, vol. 44, p. 3846.CrossRefGoogle Scholar
  4. 4.
    Behr, A., Manz, V., Lux, A., and Ernst, A., Catal. Lett., 2013, vol. 143, p. 241.CrossRefGoogle Scholar
  5. 5.
    Jacinto, M.J., Landers, R., and Rossi, L.M., Catal. Commun., 2009, vol. 10, p. 1971.CrossRefGoogle Scholar
  6. 6.
    Ren, Zh., Wang, H.-L., Cai, Y.-Q., Chen, M., and Qian, D.-J., Mater. Chem. Phys., 2011, vol. 127, p. 310.CrossRefGoogle Scholar
  7. 7.
    Chen, J., Liu, X., and Zhang, F., Chem. Eng. J., 2015, vol. 259, p. 43.CrossRefGoogle Scholar
  8. 8.
    Abu-Reziq, R., Shenglof, M., Penn, L., Cohen, T., and Blum, J., J. Mol. Catal. A. Chem., 2008, vol. 290, nos. 1–2, p. 30.CrossRefGoogle Scholar
  9. 9.
    Canning, A.S., Jackson, S.D., Monaghan, A., and Wright, T., Catal. Today, 2006, vol. 116, p. 22.CrossRefGoogle Scholar
  10. 10.
    Marín-Astorga, N., Pecchi, G., Fierro, J.L.G., and Reyes, P., J. Mol. Catal. A. Chem., 2005, vol. 231, nos. 1–2, p. 67.CrossRefGoogle Scholar
  11. 11.
    Du, W.Q., Rong, Z.M., Liang, Y., Wang, Y., Lu, X.Y., Wang, Y.F., and Lu, L.H., Chin. Chem. Lett., 2012, vol. 23, no. 7, p. 773.CrossRefGoogle Scholar
  12. 12.
    Cram, D.J. and Allinger, N.L., J. Am. Chem. Soc., 1956, vol. 78, no. 11, p. 2518.CrossRefGoogle Scholar
  13. 13.
    Chandrasekhar, S., Narsihmulu, Ch., Chandrashekar, G., and Shyamsunder, T., Tetrahedron Lett., 2004, vol. 45, p. 2421.CrossRefGoogle Scholar
  14. 14.
    Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., Latyshova, S.E., Panov, A.O., Dontsova, A.A., Shirkhanyan, P.M., and Shcherbakova, K.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 12, p. 273.CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Liguori, F., Moreno-Marrodan, C., and Barbaro, P., Chin. J. Catal., 2015, vol. 36, p. 1157.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Frund, Frund, 2015. https://doi.org/frund.vstu.ru.
  19. 19.
    Skála, D. and Hanika, J., Pet. Coal, 2003, vol. 45, nos. 3–4, p. 105.Google Scholar
  20. 20.
    Liu, G., Mi, Z., Wang, L., Zhang, X., and Zhang, S., Ind. Eng. Chem. Res., 2006, vol. 45, p. 8807.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Popov
    • 1
  • V. M. Mokhov
    • 1
  • D. N. Nebykov
    • 1
  • S. E. Latyshova
    • 1
  • K. V. Shcherbakova
    • 1
  • A. O. Panov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations