Kinetics and Catalysis

, Volume 59, Issue 4, pp 393–404 | Cite as

A DFT Study on the Selective Oxidation of Ethane Over Pure SBA-15 and SBA-15-supported Vanadium Oxide

  • B. Liu
  • D. Wang


The selective oxidation of ethane over pure SBA-15 and V/SBA-15 were theoretically studied by density functional theory. The cluster models of pure SBA-15 and V/SBA-15 were proposed. The structure properties of these two models were calculated and were found to be in good agreement with experimental values. The catalytic reaction pathways for the ethane oxidation to acetaldehyde and ethylene were determined. Our results show that the hydroxyl groups on pure SBA-15 can activate the gas-phase O2 to form a peroxide species, which acts as the active site for the selective oxidation of ethane. The formation of ethylene is much more preferred than that of acetaldehyde over pure SBA-15. For V/SBA-15, the peroxide species also acts as the active center. The energy barrier of C–H bond activation over V/SBA-15 is by 14.63 kJ/mol lower than that over pure SBA-15. The formation of acetaldehyde is preferred than that of ethylene over V/SBA-15. On the basis of our results, the reaction mechanisms of ethane selective oxidation over pure SBA-15 and V/SBA-15 were systematically compared and discussed. The theoretical results in this study are in good agreement with our previous experimental results. They can reasonably explain the catalytic nature of pure SBA-15 and the effect of vanadium, opening new perspectives in the understanding of the chemistry of SBA-15.


DFT selective oxidation of ethane SBA-15 SBA-15-supported vanadium oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavani, F. and Trifiro, F., Catal. Today, 2000, vol. 24, p. 307.CrossRefGoogle Scholar
  2. 2.
    Bergman, R.G., Nature, 2007, vol. 446, p. 391.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang, Y., An, D.L., and Zhang, Q.H., Sci. China: Chem., 2010, vol. 53, p. 337.CrossRefGoogle Scholar
  4. 4.
    Grabowski, R., Catal. Rev., 2006, vol. 48, p. 199.CrossRefGoogle Scholar
  5. 5.
    Dai, G.L., Liu, Z.P., Wang, W.N., Lu, J., and Fan, K.N., J. Phys. Chem. C, 2008, vol. 112, p. 3719.CrossRefGoogle Scholar
  6. 6.
    Labinger, J.A. and Bercaw, J.E., Nature, 2002, vol. 417, p. 507.CrossRefPubMedGoogle Scholar
  7. 7.
    Vedrine, J.C., Novakova, E.K., and Berouane, E.G., Catal. Today, 2003, vol. 81, p. 247.CrossRefGoogle Scholar
  8. 8.
    Wang, H.X. and Zhao, Z., Prog. Nat. Sci., 2005, vol. 15, p. 1066.CrossRefGoogle Scholar
  9. 9.
    Rodriguez, M.L., Ardissone, D.E., Heracleous, E., Lemonidou, A.A., López, E., Pedernera, M.N., and Borio, D.O., Catal. Today, 2010, vol. 157, p. 303.CrossRefGoogle Scholar
  10. 10.
    Mendelovici, L. and Lunsford, J.H., J. Catal., 1985, vol. 94, p. 37.CrossRefGoogle Scholar
  11. 11.
    Oyama, S.T., J. Catal., 1991, vol. 128, p. 210.CrossRefGoogle Scholar
  12. 12.
    Zhao, Z., Yamada, Y., Teng, Y., Ueda, A., Nakagawa, K., and Kobayashi, T., J. Catal., 2000, vol. 190, p. 215.CrossRefGoogle Scholar
  13. 13.
    Lou, Y., Wang, H., Zhang, Q., and Wang, Y., J. Catal., 2007, vol. 247, p. 245.CrossRefGoogle Scholar
  14. 14.
    Chaar, M.A., Patel, D., and Kung, H.H., J. Catal., 1988, vol. 109, p. 463.CrossRefGoogle Scholar
  15. 15.
    Hardcastle, F.D. and Wachs, I.E., J. Mol. Catal., 1988, vol. 46, p. 173.CrossRefGoogle Scholar
  16. 16.
    Wachs, I.E. and Wechuysen, B.M., Appl. Catal., A, 1997, vol. 157, p. 67.CrossRefGoogle Scholar
  17. 17.
    Khodakov, A., Olthof, B., Bell, A.T., and Iglesia, E., J. Catal., 1999, vol. 181, p. 205.CrossRefGoogle Scholar
  18. 18.
    Albonetti, S., Cavani, F., and Trifiro, F., Catal. Rev.: Sci. Eng., 1996, vol. 38, p. 413.CrossRefGoogle Scholar
  19. 19.
    Xie, S., Chen, K.D., Bell, A.T., and Iglesia E., J. Phys. Chem. B, 2000, vol. 104, p. 10059.CrossRefGoogle Scholar
  20. 20.
    Chen, K.D., Iglesia, E., and Bell, A.T., J. Phys. Chem. B, 2001, vol. 105, p. 646.CrossRefGoogle Scholar
  21. 21.
    Mars, P. and van Krevelen, D.W., Chem. Eng. Sci., 1954, vol. 3, p. 41.CrossRefGoogle Scholar
  22. 22.
    Creaser, D., Anderson, B., Hudgins, R.R., and Silverston, P.L., Appl. Catal., A, 1999, vol. 187, p. 147.CrossRefGoogle Scholar
  23. 23.
    Chen, K.D., Bell, A.T., and Iglesia, E., J. Phys. Chem. B, 2000, vol. 104, p. 1292.CrossRefGoogle Scholar
  24. 24.
    Fu, H., Liu, Z.P., Li, Z.H., Wang, W.N., and Fan, K.N., J. Am. Chem. Soc., 2006, vol. 128, p. 11114.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao, Z. and Kobayashi, T., Appl. Catal., A, 2001, vol. 207, p. 139.CrossRefGoogle Scholar
  26. 26.
    Zhao, Z., Yamada, Y., Ueda, A., Sakurai, H., and Kobayashi, T., Catal. Today, 2004, vol. 93–95, p. 163.CrossRefGoogle Scholar
  27. 27.
    Zhang, Z., Zhao, Z., Xu, C.M., Duan, A.J., Sha, S., Zhang, Y., and Dou, T., Chem. Lett., 2005, vol. 34, p. 1080.CrossRefGoogle Scholar
  28. 28.
    Zhao, Z., Liu, J., Duan, A., Xu, C., Kobayashi, T., and Wachs, I.E., Top. Catal., 2006, vol. 38, p. 309.CrossRefGoogle Scholar
  29. 29.
    Liu, J., Zhao, Z., Zhang, Z., Xu, C.M., Duan, A.J., and Jiang, G.Y., Acta Phys.-Chim. Sin., 2009, vol. 25, p. 2467.Google Scholar
  30. 30.
    Liu, J., Yu, L.H., Zhao, Z., Chen, Y.S., Zhu, P.Y., Wang, C., Luo, Y., Xu, C.M., Duan, A.J., and Jiang, G.Y., J. Catal., 2012, vol. 285, p. 134.CrossRefGoogle Scholar
  31. 31.
    Fu, G., Xu, X., Lu, X., and Wan, H.L., J. Am. Chem. Soc., 2005, vol. 127, p. 3989.CrossRefPubMedGoogle Scholar
  32. 32.
    Handzlik, J. and Ogonowski, J., J. Phys. Chem. C, 2012, vol. 116, p. 5571.CrossRefGoogle Scholar
  33. 33.
    Tielens, F., Gervais, C., Lambert, J. F., Mauri, F., and Costa, D., Chem. Mater., 2008, vol. 20, p. 3336.CrossRefGoogle Scholar
  34. 34.
    Wang, Z.X., Wang, D.X., Zhao, Z., Chen, Y., and Lan, J., Comput. Theor. Chem., 2011, vol. 963, p. 403.CrossRefGoogle Scholar
  35. 35.
    Wang, Z.X., Wang, D.X., Zhao, Z., and Lan, J., Zhongguo Wuji Fenxi Huaxue, 2012, vol. 28, p. 88.Google Scholar
  36. 36.
    Zhuravlev, L.T., Colloids Surf., A, 2000, vol. 173, p. 1.CrossRefGoogle Scholar
  37. 37.
    Zhao, X.S., Lu, G.Q., Whittaker, A.K., Millar, G.J., and Zhu, H.Y., J. Phys. Chem. B, 1997, vol. 101, p. 6525.CrossRefGoogle Scholar
  38. 38.
    Hess, C., Hoefelmeyer, J. D., and Don Tilley, T., J. Phys. Chem. B, 2004, vol. 108, p. 9703.CrossRefGoogle Scholar
  39. 39.
    Bronkema, J. and Bell, A.T., J. Phys. Chem. C, 2007, vol. 111, p. 420.CrossRefGoogle Scholar
  40. 40.
    Goodrow, A. and Bell, A.T., J. Phys. Chem. C, 2007, vol. 111, p. 14753.CrossRefGoogle Scholar
  41. 41.
    Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, p. A1133.CrossRefGoogle Scholar
  42. 42.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03 (Revision B.05), Gaussian, Inc., Pittsburgh, PA, 2003.Google Scholar
  43. 43.
    Becke, A.D., Phys. Rev. B, 1988, vol. 38, p. 3098.CrossRefGoogle Scholar
  44. 44.
    Becke, A.D., and Roussel, M.R., Phys. Rev. A, 1989, vol. 39, p. 3761.CrossRefGoogle Scholar
  45. 45.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  46. 46.
    Chempath, S. and Bell, A.T., J. Catal., 2007, vol. 247, p. 119.CrossRefGoogle Scholar
  47. 47.
    Schlegel, H.B., J. Comput. Chem., 1982, vol. 3, p. 214.CrossRefGoogle Scholar
  48. 48.
    Scott, A.P., and Radom, L., J. Phys. Chem., 1996, vol. 100, p. 16502.CrossRefGoogle Scholar
  49. 49.
    Susman, S., Volin, K.J., Price, D.L., Grimsditch, M., Rino, J.P., Kalia, R.K., Vashishta, P., Gwanmesia, G., Wang, Y., and Liebermann, R.C., Phys. Rev. B, 1991, vol. 43, p. 1194.CrossRefGoogle Scholar
  50. 50.
    Wim, J.M., Werner, E.H., and Rene, V., Chem. Geol., 2008, vol. 256, p. 269.CrossRefGoogle Scholar
  51. 51.
    Martin, G.A. and Mirodatos, C., Fuel Process. Technol., 1995, vol. 42, p. 179.CrossRefGoogle Scholar
  52. 52.
    Avdeev, V.I. and Parmon, V.N., J. Phys. Chem. C, 2009, vol. 113, p. 2873.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, School of Chemical and Material EngineeringJiangnan UniversityWuxiP.R. China
  2. 2.College of ScienceChina University of Petroleum-BeijingBeijingP.R. China

Personalised recommendations