Advertisement

Kinetics and Catalysis

, Volume 59, Issue 3, pp 357–362 | Cite as

Effect of the Composition of Ni x Co3–xO4 (x = 0–0.9) Oxides on Their Catalytic Activity in the Low-Temperature Reaction of N2O Decomposition

  • Yu. A. IvanovaEmail author
  • E. F. Sutormina
  • L. A. Isupova
  • V. A. Rogov
Article
  • 22 Downloads

Abstract

The Ni x Co3–xO4 (x = 0–0.9) mixed oxides with a spinel structure modified with 2% Cs according to the Pechini method were prepared by coprecipitation from the solutions of nitrates with the use of (NH4)2CO3 as a precipitating agent. It was found that the catalytic activity of the samples in the reaction of nitrous oxide decomposition at temperatures of 150–400°C increased upon the partial replacement of cobalt cations by nickel cations. The most active samples were 2%Cs/Ni0.1Co2.9O4 and 2%Cs/Ni0.7Co2.3O4. With the use of X-ray diffraction analysis, it was found that an increase in the nickel content of the mixed oxide leads to the appearance of an impurity phase of nickel oxide and to an increase in its concentration in the samples. The results of temperature-programmed reduction and temperature-programmed desorption indicated that the introduction of nickel cations was accompanied by the appearance of weakly bound oxygen species in Ni–Co spinel; this can be the reason for an increase in their activity in the reaction of N2O decomposition.

Keywords

substituted cobalt spinel nitrous oxide decomposition weakly bound oxygen species of the connected forms of 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perez-Ramirez, J., Kapteijn, F., Schoffel, K., and Moulijn, J.A., Appl. Catal., B., 2003, vol. 44, p.117.CrossRefGoogle Scholar
  2. 2.
    Ivanova, Yu.A., Ivanov, D.V., Chumachenko, V.A., Isupova, L.A., and Noskov, A.S., 22nd Int. Conf. on Chemical Reactors (CHEMREACTOR-22), Abstracts (London, 2016).Google Scholar
  3. 3.
    Li, Y.J. and Armor, J.N., Appl. Catal., B, 1992, vol. 1, p. L21.CrossRefGoogle Scholar
  4. 4.
    Tsuneyuki, T., Furukawa, H., Kagawa, S., Moriguchi, I., Kanmura, Y., and Teraok, Y., Catal. Today, 2008, vol. 139, p.59.CrossRefGoogle Scholar
  5. 5.
    Liu, N., Zhang, R., Chen, B., Li, Y., and Li, Y., J. Catal., 2012, vol. 294, p.99.CrossRefGoogle Scholar
  6. 6.
    Roy, P.K., Prins, R., and Pirngruber, G.D., Appl. Catal., B, 2008, vol. 80, p.226.CrossRefGoogle Scholar
  7. 7.
    Kondratenko, E.V., Kondratenko, V.A., Santiago, M., and Perez-Ramirez, J., J. Catal., 2008, vol. 256, p.248.CrossRefGoogle Scholar
  8. 8.
    Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., and Inoue, M., Catal. Today, 2007, vol. 120, p.145.CrossRefGoogle Scholar
  9. 9.
    Russo, N., Fino, D., Saracco, G., and Specchia, V., Catal. Today, 2007, vol. 119, p.228.CrossRefGoogle Scholar
  10. 10.
    Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J., Appl. Catal., B, 1996, vol. 9, p.25.CrossRefGoogle Scholar
  11. 11.
    Duprez, D., Abderrahim, H., Kacimi, S., and Riviere, O., 2nd Symp. on Spillover, Ed. by K.H. Stenberg, Leipzig, 1989, p.127.Google Scholar
  12. 12.
    Franken, T. and Palkovits, R., Appl. Catal., B, 2015, vol. 176–177, p.298.CrossRefGoogle Scholar
  13. 13.
    Yan, L., Ren, T., Wang, X., Gao, Q., Ji, D., and Suo, J., Catal. Commun., 2003, vol. 4, p.505.CrossRefGoogle Scholar
  14. 14.
    Yan, L., Ren, T., Wang, X., Ji, D., and Suo, J., Appl. Catal., B, 2003, vol. 45, p. 85CrossRefGoogle Scholar
  15. 15.
    Abu-Zied, B.M., Soliman, S.A., and Abdellah, S.E., J. Ind. Eng. Chem., 2015, vol. 21, p.814.CrossRefGoogle Scholar
  16. 16.
    Stelmachowski, P., Maniak, G., Kotarba, A., and Sojka, Z., Catal. Commun., 2009, vol. 10, p. 1062.CrossRefGoogle Scholar
  17. 17.
    Abu-Zied, B.M., Asiri, A.M., and Chin, J, J. Catal., 2015, vol. 36, p. 1837.Google Scholar
  18. 18.
    Ivanova, Yu.A., Sutormina, E.F., Isupova, I.A., and Vovk, E.I., Kinet. Catal., 2017, vol. 58, no. 6, p.769.CrossRefGoogle Scholar
  19. 19.
    Markov, L. and Petrov, K., React. of Solids, 1986, vol. 1, p.319.CrossRefGoogle Scholar
  20. 20.
    Asano, K., Ohnishi, C., Iwamoto, S., Shioya, Y., and Inoue, M., Appl. Catal., B, 2008, vol. 78, p.242.CrossRefGoogle Scholar
  21. 21.
    Chromcakova, Z., Obalova, L., Kovanda, F., Legut, D., Titov, A., Ritz, M., Fridrichova, D., Michalik, S., Kustrowski, P., and Jirátová, K., Catal. Today, 2015, vol. 257, p.18.CrossRefGoogle Scholar
  22. 22.
    Zhang, F., Wang, X., Zhang, X., Turxun, M., Yu, H., and Zhao, J., Chem. Eng. J., 2014, vol. 256, p.365.CrossRefGoogle Scholar
  23. 23.
    Pavlova, S., Tikhov, S., Sadykov, V., Dyatlova, Y., Snegurenko, O., Rogov, V., Vostrikov, Z., Zolotarskii, I., Kuzmin, V., and Tsybulya, S., Stud. Surf. Sci. Catal., 2004, vol. 147, p.223.CrossRefGoogle Scholar
  24. 24.
    Winter, E.R.S., J. Catal., 1970, vol. 19, p. 32.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Ivanova
    • 1
    Email author
  • E. F. Sutormina
    • 1
  • L. A. Isupova
    • 1
  • V. A. Rogov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations