Advertisement

Kinetics and Catalysis

, Volume 59, Issue 1, pp 58–69 | Cite as

Redox and Catalytic Properties of Copper Molybdates with Various Composition

  • E. V. Soltys
  • Kh. Kh. Urazov
  • T. S. Kharlamova
  • O. V. Vodyankina
Article
  • 36 Downloads

Abstract

Using XRD and temperature-programmed reduction (TPR), phase and structural transformations of copper molybdates Cu3Mo2O9 and CuMoO4 were investigated in the course of their treatment with hydrogen, carbon monoxide or soot. The catalytic properties of copper molybdates Cu3Mo2O9 and CuMoO4 were studied in model oxidation reactions of carbon monoxide and soot. Phase and structural transformations of the molybdates, in particular formation of Cu4–xMo3O12 and Cu6Mo5O18 phases, was shown to have a significant impact on the formation of active state of the catalysts in the model reactions considered.

Keywords

copper molybdates temperature-programmed reduction phase and structural transformations CO oxidation soot oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chub, O.V., Mokrinskii, V.V., Reshetnikov, S.I., Yazykov, N.A., Dubinin, Yu.V., Simonov, A.D., and Yakovlev, V.A., Katal. Prom-sti, 2013, no. 5, p.54.Google Scholar
  2. 2.
    Toniolo, F.S., Barbosa-Coutinho, E., Schwaab, M., Leocadio, I.C., Aderne, R.S., Schmal, M., and Pinto, J.C., Appl. Catal. A, 2008, vol. 342, no. 1, p.87.CrossRefGoogle Scholar
  3. 3.
    Mei, C., Yuan, Y., Li, X., and Mei, D., Bull. Chem. React. Eng. Catal., 2016, vol. 11, no. 3, p.389.CrossRefGoogle Scholar
  4. 4.
    Wang, J. Cheng, L., An, W., Xu, J., and Men, Y., Catal. Sci. Technol., 2016, vol. 6, no. 19, p. 7342.CrossRefGoogle Scholar
  5. 5.
    Leocadio, I.C.L., Braun, S., and Schmal, M., J. Catal., 2004, vol. 223, no. 1, p.114.CrossRefGoogle Scholar
  6. 6.
    Wang, C.H. and Weng, H.S., Ind. Eng. Chem. Res., 1997, vol. 36, no. 7, p. 2537.CrossRefGoogle Scholar
  7. 7.
    Li, L., Mao, D., Yu, J., and Guo, X., J. Power Sources, 2015, vol. 279, p.394.CrossRefGoogle Scholar
  8. 8.
    Pham, T.T.P., Nguyen, P.H.D., Vo, T.T., Luu, C.L., and Nguyen, H.H.P., Mater. Chem. Phys., 2016, vol. 184, p.5.CrossRefGoogle Scholar
  9. 9.
    Rousseau, R., Dixon, D.A., Kay, B.D., and Dohnalek, Z., Chem. Soc. Rev., 2014, vol. 43, no. 22, p. 7664.CrossRefPubMedGoogle Scholar
  10. 10.
    Gordeev, A.V., Zhukov, I.A., Gordeeva, O.S., Pavlitskii, N.A., Merk, A.A., Soltys, E.V., and Knyazev, A.S., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., Ser. Fizika, 2011, no. 12/2, p.15.Google Scholar
  11. 11.
    Amakawa, K., Krohnert, J., Wrabetz, S., Frank, B., Hemmann, F., Jager, C., Schlogl, R., and Trunschke, A., ChemCatChem, 2015, vol. 7, no. 24, p. 4059.CrossRefGoogle Scholar
  12. 12.
    US Patent no. 20160075617, 2016.Google Scholar
  13. 13.
    Boyadjian, C., van der Veer, B., Babich, I.V., Lefferts, L., and Seshan, K., Catal. Today, 2010, vol. 157, no. 1, p.345.CrossRefGoogle Scholar
  14. 14.
    Al-Yassir, N. and Le Van Mao, R., Appl. Catal. A, 2006, vol. 305, no. 2, p.130.CrossRefGoogle Scholar
  15. 15.
    Choudhary, V.R., Jha, R., Chaudhari, N.K., and Jana, P., Catal. Commun., 2007, vol. 8, no. 10, p. 1556.CrossRefGoogle Scholar
  16. 16.
    Choudhary, V.R., Jha, R., and Jana, P., Catal. Commun., 2008, vol. 10, no. 2, p.205.CrossRefGoogle Scholar
  17. 17.
    Wang, C.H., Lee, C.N., and Weng, H.S., Ind. Eng. Chem. Res., 1998, vol. 37, p. 1774.CrossRefGoogle Scholar
  18. 18.
    Wang, C.H., Lin, S.S., Liou, S.B., and Weng, H.S., Chemosphere, 2002, vol. 49, no. 4, p.389.CrossRefPubMedGoogle Scholar
  19. 19.
    Dong, L., Yao, X., and Chen, Y., Chin. J. Catal., 2013, vol. 34, no. 5, p.851.CrossRefGoogle Scholar
  20. 20.
    Devulapelli, V.G. and Sahle-Demessie, E., Appl. Catal. A, 2008, vol. 348, p.86.CrossRefGoogle Scholar
  21. 21.
    Chu, W.G., Wang, H.F., Guo, Y.J., Zhang, L.N., Han, Z.H., Li, Q.Q., and Fan, S.S., Inorg. Chem., 2009, vol. 48, no. 3, p. 1243.CrossRefPubMedGoogle Scholar
  22. 22.
    Lebukhova, N.V., Karpovich, N.F., Makarevich, K.S., and Chigrin, P.G., Kataliz v Prom-sti, 2008, no. 6, p.35.Google Scholar
  23. 23.
    Chigrin, P.G., Lebukhova, N.V., and Ustinov, A.Yu., Kinet. Katal., 2013, vol. 54, no. 1, p.79.CrossRefGoogle Scholar
  24. 24.
    Hasan, M.A., Zaki, M.I., Kumari, K., and Pasupulety, L., Thermochim. Acta, 1998, vol. 320, no. 1, p.23.CrossRefGoogle Scholar
  25. 25.
    Chigrin, P.G., Cand. Sci. (Chem.) Dissertation, Vladivostok: DVO RAN, 2012.Google Scholar
  26. 26.
    Lebukhova, N.V. and Karpovich, N.F., Neorg. Mater., 2008, vol. 44, no. 8, p. 1003.CrossRefGoogle Scholar
  27. 27.
    Bettahar, M.M., Costentin, G., Savary, L., and Lavalley, J.C., Appl. Catal. A, 1996, vol. 145, no. 1, p.1.CrossRefGoogle Scholar
  28. 28.
    Habbr, J., Stoch, J., and Siltowski, T., Stud. Surf. Sci. Catal., 1981, vol. 7, p. 1402.CrossRefGoogle Scholar
  29. 29.
    Moro-Oka, Y., Takita, Y., and Ozaki, A., J. Catal., 1971, vol. 23, no. 2, p.183.CrossRefGoogle Scholar
  30. 30.
    Haber, J. and Wiltowski, T., Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1979, vol. 27, p.785.Google Scholar
  31. 31.
    Maggiore, R., Galvagno, S., Bart, J.C.J., Giannetto, A., and Toscano, G., Z. Phys. Chem., 1982, vol. 132, p.85.CrossRefGoogle Scholar
  32. 32.
    Wen, W., Jing, L., White, M.G., Marinkovic, N., Hanson, J.C., and Rodriguez, J.A., Catal. Lett., 2007, vol. 113, nos. 1–2, p.1.CrossRefGoogle Scholar
  33. 33.
    Machej, T. and Ziolkowski, J., J. Solid State Chem., 1980, vol. 31, no. 2, p.145.CrossRefGoogle Scholar
  34. 34.
    Koop, M. and Müller-Buschbaum, Hk., Z. Anorg. Allg. Chem., 1985, vol. 531, no. 12, p.140.CrossRefGoogle Scholar
  35. 35.
    Benchikhi, M., El Ouatib, R., Guillemet-Fritsch, S., Chane-Ching, J.Y., Er-Rakho, L., and Durand, B., Ceram. Int., 2014, vol. 40, no. 4, p. 5371.CrossRefGoogle Scholar
  36. 36.
    Asano, T., Nishimura, T., Ichimura, S., Inagaki, Y., Kawae, T., Fukui, T., and Gaulin, D.B., J. Phys. Soc. Jpn., 2011, vol. 80, no.9.Google Scholar
  37. 37.
    Kihlborg, L., Norrestam, R., and Olivecrona, B., Acta Crystallogr., 1971, vol. 27, no. 11, p. 2066.CrossRefGoogle Scholar
  38. 38.
    Vilminot, S., Andre, G., and Kurmoo, M., Inorg. Chem., 2009, vol. 48, no. 6, p. 2687.CrossRefPubMedGoogle Scholar
  39. 39.
    Raw, A.D., Ibers, J.A., and Poeppelmeier, K.R., J. Solid State Chem., 2013, vol. 200, p.165.CrossRefGoogle Scholar
  40. 40.
    Katz, L., Kasenally, A., and Kihlborg, L., Acta Crystallogr., 1971, vol. 27, no. 11, p. 2071.CrossRefGoogle Scholar
  41. 41.
    Steiner, U., Reichelt, W., and Oppermann, H., Z. Anorg. Allg. Chem., 1996, vol. 622, no. 8, p. 1428.CrossRefGoogle Scholar
  42. 42.
    Haber, J., Machej, T., Ungier, L., and Ziolkowski, J., J. Solid State Chem., 1978, vol. 25, no. 3, p.207.CrossRefGoogle Scholar
  43. 43.
    Machej, T. and Ziolkowski, J., J. Solid State Chem., 1980, vol. 31, no. 2, p.135.CrossRefGoogle Scholar
  44. 44.
    Schulmeyer, W.V. and Ortner, H.M., Int. J. Refract. Met. Hard Mater., 2002, vol. 20, no. 4, p.261.CrossRefGoogle Scholar
  45. 45.
    Samsuri, A., Saharuddin, T.S.T., Salleh, F., Othaman, R., Hisham, M.W.M., and Yarmo, M.A., Malaysian J. Anal. Sci., 2016, vol. 20, no. 2, p.382.CrossRefGoogle Scholar
  46. 46.
    Kirakosyan, H., Minasyan, T., Niazyan, O., Aydinyan, S., and Kharatyan, S., J. Therm. Anal. Calorim., 2016, vol. 123, no. 1, p.35.CrossRefGoogle Scholar
  47. 47.
    Wang, X., Hanson, J.C., Frenkel, A.I., Kim, J.Y., and Rodriguez, J.A., J. Phys. Chem. B, vol. 108, no. 36, p. 13667.Google Scholar
  48. 48.
    Yang, B.X., Ye, L.P., Gu, H.J., Huang, J.H., Li, H.Y., and Luo, Y., J. Mol. Model, 2015, vol. 21, no. 8, p.195.CrossRefPubMedGoogle Scholar
  49. 49.
    Svintsitskiy, D.A., Kardash, T.Y., Stonkus, O.A., Slavinskaya, E.M., Stadnichenko, A.I., Koscheev, S.V., and Boronin, A.I., J. Phys. Chem., 2013, vol. 117, no. 28, p. 14588.Google Scholar
  50. 50.
    Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Catal. Today, 2016, vol. 278, p.150.CrossRefGoogle Scholar
  51. 51.
    Slavinskaya, E.M., Kardash, T.Yu., Stonkus, O.A., Gulyaev, R.V., Lapin, I.N., Svetlichnyi, V.A., and Boronin, A.I., Catal. Sci. Technol., 2016, vol. 6, p. 6650.CrossRefGoogle Scholar
  52. 52.
    Huang, W., Sun, G., and Cao, T., Chem. Soc. Rev., 2017, vol. 46, p. 1977.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang, Q., Deng, W., and Wang, Y., Chem. Commun., 2011, vol. 47, p. 9275.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Soltys
    • 1
  • Kh. Kh. Urazov
    • 1
  • T. S. Kharlamova
    • 1
  • O. V. Vodyankina
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations