Kinetics and Catalysis

, Volume 59, Issue 1, pp 112–122 | Cite as

Controlling the Catalytic Properties of Copper-Containing Oxide Catalysts

  • T. P. MinyukovaEmail author
  • A. A. Khassin
  • T. M. Yurieva


The results of a systematic study of the formation of Cu–Zn, Cu–Zn–Al, Cu–Zn–Cr, Cu–Zn–Si, Cu–Cr, and Cu–Si oxide catalysts with a widely varied ratio between their components are generalized within the chemical approach developed by G.K. Boreskov to establish the quantitative relation between their chemical composition and catalytic activity. Simultaneously, their catalytic properties, such as selectivity and activity, are measured under the same conditions in the methanol synthesis and dehydrogenation and water gas shift reactions, whose common feature is a reductive reaction medium. The activity of Cu–Zn–Al–Cr— Si-oxide catalysts in all the studied reactions is governed by the Cu0 nanoparticles formed on their surface in the process of reductive activation. Nanoparticles of different catalysts have similar sizes (3–8 nm). However, the ratios between the catalytic activities per unit of the copper surface area for catalysts with various structures of their oxide support (spinel, wurtzite, zincsilite, or silica type) are appreciably different in each reaction. The relation between the chemical composition of a catalyst and its catalytic activity in a certain reaction is established by the chemical composition of its precursor representing a hydroxo compound, i.e., the nature of the selected cations and the quantitative ratio between them. The decomposition of hydroxo compounds to oxides (and the further activation of oxides) should be performed at medium temperatures, providing the incomplete elimination of ОН and CO32- anions, i.e., the formation of anion-modified oxides. The structure of the latter and the type of interaction between Cu0 nanoparticles and an oxide support are governed by the structure of the hydroxo precursor compound.


methanol synthesis water gas shift reaction methanol dehydrogenation Cu–ZnO Cu-spinel Cu-silicate Cu0 nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boreskov, G.K., Nekotorye problemy kataliza (Some problems of catalysis), Moscow: Znanie, 1981.Google Scholar
  2. 2.
    Ketchik, S.V., Plyasova, L.M., Yurieva, T.M., Didikina, M.A., Kuznetsova, L.I., and Minyukova, T.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1983, vol. 6, p.109.Google Scholar
  3. 3.
    Ketchik, S.V., Plyasova, L.M., Yurieva, T.M., Kuznetsova, L.I., and Minyukova, T.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1984, vol. 1, p.36.Google Scholar
  4. 4.
    Ketchik, S.V., Plyasova, L.M., Yurieva, T.M., Kuznetsova, L.I., and Minyukova, T.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1984, vol. 4, p.37.Google Scholar
  5. 5.
    Minyukova, T.P., Plyasova, L.M, Yurieva, T.M., Litvak, G.S., and Ketchik, S.V., Kinet. Catal., 1989, vol. 30, no. 2, p.356.Google Scholar
  6. 6.
    Ketchik, S.V., Minyukova, T.P., Kuznetsova, L.I., Plyasova, L.M., Yurieva, T.M., and Boreskov, G.K., React. Kinet. Catal. Lett., 1982, vol. 19, nos. 3–4, p.345.CrossRefGoogle Scholar
  7. 7.
    Makarova, O.V. and Yurieva, T.M., Plyasova, L.M., Ziborov, A.V., Kustova, G.N., Odegova, G.V., Kinet. Catal., 1995, vol. 36, no.5. P.712.Google Scholar
  8. 8.
    Yurieva, T.M., Kustova, G.N., Minyukova, T.P., Poels, E.K., Bliek, A., Demeshkina, M.P., Plyasova, L.M., Krieger, T.A., and Zaikovskii, V.I., Mat. Res. Innovat., 2001, vol. 5, p.3.CrossRefGoogle Scholar
  9. 9.
    Yurieva, T.M., Minyukova, T.P., Kustova, G.N., Plyasova, L.M., Krieger, T.A., Demeshkina, M.P., Zaikovskii, V.I., Malakhov, V.V., and Dovlitova, L.S., Mat. Res. Innovat., 2001, vol. 5, p.74.CrossRefGoogle Scholar
  10. 10.
    Khassin, A.A., Minyukova, T.P., and Yurieva, T.M., Mendeleev Commun., 2014, vol. 24, no. 2, p.67.CrossRefGoogle Scholar
  11. 11.
    Fujitani, T. and Nakamura, J., Catal. Lett., 1998, vol. 56, p.119.CrossRefGoogle Scholar
  12. 12.
    Millar, G.J., Holm, I.H., Uwins, P.J.R., and Drennan, J., J. Chem. Soc. Faraday Trans., 1998, vol. 94, no. 4, p.593.CrossRefGoogle Scholar
  13. 13.
    Behrens, M. and Girgsdies, F., Z. Anorg. Allg. Chem., 2010, vol. 636, p.919.CrossRefGoogle Scholar
  14. 14.
    Erenburg, B.G., Fateeva, V.P., Min’kov, A.I., Shadrina, L.M., and Stoyanov, E.S., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1981, vol. 4, no. 2, p.54.Google Scholar
  15. 15.
    Minyukova, T.P., Shtertser, N.V., Khasin, A.A., Plyasova, L.M., Kustova, G.N., Zaikovskii, V.I., Shvedenkov, Yu.G., Baronskaya, N.A., Heuvel, J.C., Kuznetsova, A.V., Davydova, L.P., and Yurieva, T.M., Kinet. Catal., 2008, vol. 49, no. 6, p.821.CrossRefGoogle Scholar
  16. 16.
    Schumann, J., Tarasov, A., Thomas, N., Schlögl, R., and Behrens, M., Appl. Catal. A. General, 2016, vol. 516, p.117.CrossRefGoogle Scholar
  17. 17.
    Yurieva, T.M., Plyasova, L.M., Zaikovskii, V.I., Minyukova, T.P., Bliek, A., Heuvel, J.C., Davydova, L.P., Molina, I.Yu., Demeshkina, M.P., Khassin, A.A., and Batyrev, E.D., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 18, p. 4522.CrossRefGoogle Scholar
  18. 18.
    Litvak, G.S., Minyukova, T.P., Demeshkina, M.P., Plyasova, L.M., and Yurieva, T.M., React. Kinet. Catal. Lett., 1986, vol. 31, no. 2, p.403.CrossRefGoogle Scholar
  19. 19.
    Khassin, A.A., Minyukova, T.P., and Yurieva, T.M., Kinet. Catal., 2014, vol. 55, no. 4, p.502.CrossRefGoogle Scholar
  20. 20.
    Kuznetsova, L.I., Yurieva, T.M., Minyukova, T.P., Ketchik, S.V., Plyasova, L.M., and Boreskov, G.K., React. Kinet. Catal. Lett., 1982, vol. 19, nos. 3–4, p.355.CrossRefGoogle Scholar
  21. 21.
    Yurieva, T.M., Plyasova, L.M., Makarova, O.V., and Krieger, T.A., J. Mol. Catal. A. Chem., 1996, vol. 113, no. 3, p.455.CrossRefGoogle Scholar
  22. 22.
    Grunvaldt, J.D., Molenbroek, A.M., Topsoe, N.Y., Topsoe, H., and Clausen, B.S., J. Catal., 2000, vol. 194, p.452.CrossRefGoogle Scholar
  23. 23.
    Hadzhieva, F.S., Anufrienko, V.F., Yurieva, T.M., Vorobiev, V.N., and Minyukova, T.P., React. Kinet. Catal. Lett., 1986, vol. 30, no. 1, p.85.CrossRefGoogle Scholar
  24. 24.
    Yurieva, T.M., Plyasova, L.M., Krieger, T.A., Zaikovskii, V.I., Makarova, O.V., and Minyukova, T.P., React. Kinet. Catal. Lett., 1993, vol. 51, no. 2, p.495.CrossRefGoogle Scholar
  25. 25.
    Khassin, A.A., Pelipenko, V.V., Minyukova, T.P., Zaikovskii, V.I., Kochubey, D.I., and Yurieva, T.M., Catal. Today, 2006, vol. 112, nos. 1-4, p.143.CrossRefGoogle Scholar
  26. 26.
    Plyasova, L.M., Yurieva, T.M., Kriger, T.A., Makarova, O.V., Zaikovskii, V.I., Solov’eva, L.P., and Shmakov, A.N., Kinet. Catal., 1995, vol. 36, no. 3, p.425.Google Scholar
  27. 27.
    Yurieva, T.M., React. Kinet. Catal. Lett., 1995, vol. 55, no. 2, p.513.CrossRefGoogle Scholar
  28. 28.
    Vitanen, M.M., Jansen, W.P.A., van Welzenis, R.G., Brongerma, H.H., Brands, D.S., Poels, E.K., and Bliek, A., J. Phys. Chem. B, 1999, vol. 103, no. 29, p. 6025.CrossRefGoogle Scholar
  29. 29.
    Makarova, O.V., Yurieva, T.M., Kustova, G.N., Ziborov, A.V., Plyasova, L.M., Minyukova, T.P., Davydova, L.P., and Zaikovskii, V.I., Kinet. Catal., 1993, vol. 34, no. 4, p.608.Google Scholar
  30. 30.
    Plyasova, L.M., Yurieva, T.M., Molina, I.Yu., Kriger, T.A., Balagurov, A.M., Davydova, L.P., Zaikovskii, V.I., Kustova, G.N., Malakhov, V.V., and Zaikovskii, V.I., Kinet. Catal., 2000, vol. 41, no. 3, p.429.CrossRefGoogle Scholar
  31. 31.
    van den Berg, R., Elkjaer, C.F., Gommes, C.J., and Helveg, S., J. Am. Chem. Soc., 2016, vol. 138, no. 10, p. 3433.CrossRefPubMedGoogle Scholar
  32. 32.
    Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.L., Tovar, M., Fischer, R.W., Nørskov, J.K., Schlögl, R., Science, 2012, vol. 336, p.893.CrossRefPubMedGoogle Scholar
  33. 33.
    Khassin, A.A., Ruzankin, S.F., Anufrienko, S.F., Altynnikov, A.A., Larina, T.V., Heuvel, J.C., Yurieva, T.M., and Parmon, V.N., Doklady Phy. Chem., 2006, vol. 409, no. 2, p.193.CrossRefGoogle Scholar
  34. 34.
    Batyrev, E.D., Heuvel, J.C., Beckers, J., Jansen, W.P.A., and Castricum, H.L., J. Catal., 2005, vol. 229, p.136.CrossRefGoogle Scholar
  35. 35.
    Lunkenbein, T., Schumann, J., Behrens, M., Schögl, R., and Willinger, M.G., Angew. Chem. Int. Ed. Engl., 2015, vol. 54, no. 15, p. 4544.CrossRefPubMedGoogle Scholar
  36. 36.
    Kuld, S., Thorhauge, M., Falsig, H., Elkaer, C.F., Helveg, S., Chorkendorff, I., and Sehested, J., Science, 2016, vol. 352, no. 6288, p.969.CrossRefPubMedGoogle Scholar
  37. 37.
    Jansen, W.P.A., Beckers, J., v.d. Heuvel, J.C., v.d. Gon, A.W.D., Bliek, A., Brongersma, H.H. J. Catal., 2002, vol. 210, p.229.CrossRefGoogle Scholar
  38. 38.
    Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsoe, H., Science, 2002, vol. 295, p. 2053.CrossRefPubMedGoogle Scholar
  39. 39.
    d’Alnoncourt, R.N., Xia, X., Strunk, J., Loffler, E., Hinrichsen, O., and Muhler, M., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 1525.CrossRefGoogle Scholar
  40. 40.
    Schumann, J., Eichelbaum, M., Lunkenbein, T., Thomas, N., Álvarez Galván, M.C., Schlögl, R., Behrens, M., ACS Catal., 2015, vol. 5, p. 3260.CrossRefGoogle Scholar
  41. 41.
    Minyukova, T.P., Khasin, A.V., Khasin, A.A., Shtertser, N.V., Simentsova, I.I., and Yurieva, T.M., Catal. Ind., 2016, vol. 8, no. 4, p.293.CrossRefGoogle Scholar
  42. 42.
    Minyukova, T.P., Simentsova, I.I., Khasin, A.V., Shtertser, N.V., Baronskaya, N.A., Khassin, A.A., and Yurieva, T.M., Appl. Catal. A. General, 2002, vol. 237, p. 171.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. P. Minyukova
    • 1
    Email author
  • A. A. Khassin
    • 1
  • T. M. Yurieva
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations