Advertisement

Kinetics and Catalysis

, Volume 59, Issue 1, pp 48–57 | Cite as

Kinetic Study and Optimization of Catalytic Peroxide Delignification of Aspen Wood

  • B. N. Kuznetsov
  • N. V. Chesnokov
  • N. V. Garyntseva
  • I. G. Sudakova
  • A. V. Pestunov
  • L. D’yakovich
  • K. Pinel’
Article
  • 30 Downloads

Abstract

It is established that the main regularities of the peroxide delignification of aspen wood in the temperature range of 70–100°С in the presence of dissolved (H2SO4) and solid (TiO2) catalysts are similar. With an increase of the temperature, the concentration of hydrogen peroxide and acetic acid, and the hydromodule (HM) values, as well as the duration of the process and the content of cellulose in the cellulose products, increase, while the content of the residual lignin decreases. Simultaneously, the total yield of cellulose products decreases independently of the nature of the catalyst. Delignification processes are satisfactory described by the first-order equation. A sufficiently high activation energy (88 kJ/mol in the presence of H2SO4 and 75 kJ/mol in the presence of TiO2) indicates the absence of significant external diffusion constraints in the selected conditions. The optimal conditions of obtaining cellulose products with a low content of residual lignin from aspen wood are found by the calculation methods. It is shown by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) that the structure of cellulose products obtained corresponds to the structure of industrial microcrystalline cellulose. In the optimal conditions, a high-quality cellulose product can be obtained in mild conditions (the temperature is 100°С, atmospheric pressure) by using a safer and technological TiO2 catalyst instead of a sulfuric acid catalyst.

Keywords

aspen wood peroxide delignification catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajpai, P., Pulp and Paper Industry. Energy Conversion, Elsevier, 2016, p.260.Google Scholar
  2. 2.
    Johan, G. and Fogelbolm, C.J., Papermaking Sciences and Technology, 6A Chemical Pulping, Finland: Tappi Press, 2000, p.41.Google Scholar
  3. 3.
    Geles, I.S., Drevesnoe syr’e, Strategicheskaya osnova i rezerv tsivilizatsii (Wood Raw Materials: The Strategic Basis and Reserve of Civilization), Petrazavodsk: Karel’skii Nauchnyi Tsentr RAN, 2007, p.499.Google Scholar
  4. 4.
    Nepenin, Yu.N., Tekhnologiya tsellyulozy. Proizvodstvo sul’fatnoi tsellyulozy (Technology of cellulose. Production of sulphate pulp), Moscow: Lesnaya Prom-st’, 1990.Google Scholar
  5. 5.
    Smook, G.A., Handbook for Pulp and Paper Technologists, Vancouver (Canada): Angus Wilde Publications, 2002, p.447.Google Scholar
  6. 6.
    Sixta, H., Potthast, A., and Krotschek, A.W., Handbook of Pulping, Weinheim: Wiley-VCH, 2006, vol. 1, p.109.CrossRefGoogle Scholar
  7. 7.
    Pohjanvesi, S., Saan, K., Poopius-Levlin, K., and Sundquist, J., 8th Int. Symp. Wood and Pulp. Chem., Helsinki, 1995, vol. 2, p.154.Google Scholar
  8. 8.
    Jahan, M.S., Chowdhury, D.A.N., and Islam, M.K., Cell. Chem. Technol., 2007, vol. 41, p.137.Google Scholar
  9. 9.
    Baeza, J., Pedreros, A., and Urizar, S., Cell. Chem. Technol., 1999, vol. 33, p.81.Google Scholar
  10. 10.
    Oliet, M., Rodrigues, F., Santos, A., and Gilarranz, M., Ind. Eng. Chem. Res., 2000, vol. 39, no. 1, p.34.CrossRefGoogle Scholar
  11. 11.
    Evtuguin, D.V., Deineko, I.P., and Pascoal, N.C., Cell. Chem. Technol., 1999, vol. 33, p.103.Google Scholar
  12. 12.
    Leh, C.P., Wanrosli, W.D., Zainuddin, Z., and Tanaka, R., Ind. Crop. Prod., 2008, vol. 28, p.260.CrossRefGoogle Scholar
  13. 13.
    Suchy, M. and Argyropoulos, D., TAPPI Pulping Process and Product Quality Conference, Boston (USA), 2000, p.384.Google Scholar
  14. 14.
    Oxidative Delignification Chemistry: Fundamentals and Catalysis. ACS symposium series, Argyropoulos, D.S., Ed., Washington: Oxford University, 2001.Google Scholar
  15. 15.
    Tranzil, U., Mohammad, T., and Mohammad, A., J. Chem. Soc. Pakistan, 2001, vol. 23, p.210.Google Scholar
  16. 16.
    Kuznetsov, B.N., Kuznetsova, S.A., Yatsenkova, O.V., and Danilov, V.G., Poluchenie tsellyulozy kataliticheskoi delignifikatsiei drevesiny peroksidom vodoroda (Production of cellulose by catalytic delignification of wood with hydrogen peroxide), Krasnoyarsk: Sibirskii federal’nyi universitet, 2014.Google Scholar
  17. 17.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., Kozlov, I.A., Taraban’ko, V.E., and Ivanchenko, N.M., Catal. Today, 2002, vol. 75, p.211.CrossRefGoogle Scholar
  18. 18.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., and Yatsenkova, O.V., Tsellyuloza. Bumaga. Karton, 2007, no. 12, p.27.Google Scholar
  19. 19.
    Kuznetsov, B.N., Taraban’ko, V.E., and Kuznetsova, S.A., Kinet. Katal., 2008, vol. 49, no. 4, p.541.CrossRefGoogle Scholar
  20. 20.
    Hu, F., Jang, S., and Ragauskas, A., Bioresource Technol., 2012, vol. 117, p.7.CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Djakovitch, L., and Pinel, C., React. Kinet. Mech. Catal., 2013, vol. 110, p.271.CrossRefGoogle Scholar
  22. 22.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., and Yatsenkova, O.V., Reac. Kinet. Catal. Lett., 2008, vol. 94, p.311.CrossRefGoogle Scholar
  23. 23.
    Sjoostroom, E. and Alern, R., Analytical Methods in Wood Chemistry. Pulping and Papermaking, Berlin: Springer, 1999.CrossRefGoogle Scholar
  24. 24.
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., and Jonson, D.K., Biotechnol. Biofuels, 2010, vol. 3, p.10.CrossRefGoogle Scholar
  25. 25.
    Montgomery, D.C., Runger, G.C., and Hubele, N.F., Engineering Statistics, 5th ed., Wiley, 2011, p.546.Google Scholar
  26. 26.
    Hinterstoisser, B. and Salmen, L., Cellulose, 1999, vol. 6, no. 3, p.251.CrossRefGoogle Scholar
  27. 27.
    Fan, M., Dai, D., and Huang, B., Fourier Transform–Materials Analysis, Salih, R., Ed., 2012, p.260.Google Scholar
  28. 28.
    Thakur, V.K. and Thakur, M.K., Handbook of Sustainable Polymers: Structure and Chemistry, Taylor & Francis Group LLC, 2016, p.923.CrossRefGoogle Scholar
  29. 29.
    Ma, R., Guo, M., and Zhang, X., ChemSusChem, 2014, vol. 7, p.412.CrossRefGoogle Scholar
  30. 30.
    The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, Triantafyllidis, K., Lappas, A., Stocker, M., Eds., Elsevier, 2013, p.594.Google Scholar
  31. 31.
    Bian, J., Peng, F., Xu, F., Sun, R-C., and Kennedy, J.F., Carbohydr. Res., 2010, vol. 80, p.753.CrossRefGoogle Scholar
  32. 32.
    Belmokaddem, F.Z., Pinel, C., Huber, P., Petit-Conil, M., and Perez, D.S., Carbohydr. Res., 2011, vol. 346, p. 2896.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. N. Kuznetsov
    • 1
    • 2
  • N. V. Chesnokov
    • 1
  • N. V. Garyntseva
    • 1
  • I. G. Sudakova
    • 1
  • A. V. Pestunov
    • 1
  • L. D’yakovich
    • 3
  • K. Pinel’
    • 3
  1. 1.Institute of Chemistry and Chemical Technology, Siberian BranchRussia Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.IRCELYONVilleurbanne, LyonFrance

Personalised recommendations