Advertisement

Kinetics and Catalysis

, Volume 59, Issue 1, pp 23–47 | Cite as

Oxidation of Water to Molecular Oxygen by One-Electron Oxidants on Transition Metal Hydroxides

  • A. S. Chikunov
  • O. P. Taran
  • A. A. Shubin
  • I. L. Zilberberg
  • V. N. Parmon
Article
  • 60 Downloads

Abstract

Surveyed in this review are the most important achievements in the research and development of catalysts based on Mn, Fe, Co, and Cu hydroxides for the oxidation of water to molecular oxygen by chemical oxidizing agents obtained, for the most part, at Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences. An analysis of the results of kinetic studies on water oxidation in the presence of the above-menthioned catalysts together with data obtained by quantum chemistry methods allowed us to make a conclusion on the general nature and process mechanism both in the presence of artificial catalytic systems based on metal hydroxides and the natural enzyme photosystem II of green plants. The most important properties of hydroxo compounds responsible for catalytic activity in the oxidation of water by one-electron oxidants are discussed, and a possible reaction mechanism is considered.

Keywords

water oxidation one-electron oxidants artificial catalytic systems transition metal hydroxides natural enzyme photosystem II catalytic activity of hydroxo compounds artificial photosynthesis oxygen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larkum, A.W.D., Curr. Opin. Biotec., 2010 vol. 21, p.271.CrossRefGoogle Scholar
  2. 2.
    BP Statistical Review of World Energy, 2016.Google Scholar
  3. 3.
    Kunin, E.V., Logika sluchaya. O prirode i proiskhozhdenii biologicheskoi evolyutsii (The logic of the case. On the nature and origin of biological evolution), Moscow: Tsentrpoligraf, 2014.Google Scholar
  4. 4.
    Rappaport, F., Guergova-Kuras, M., Nixon, P.J., Diner, B.A., and Lavergne, J., Biochemistry, 2002, vol. 41, p. 8518.CrossRefPubMedGoogle Scholar
  5. 5.
    Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N., Nature, 2011, vol. 473, p.55.CrossRefGoogle Scholar
  6. 6.
    Kok, B., Forbush, B., and McGloin, M., Photochem. Photobiol., 1970, vol. 11, p.457.CrossRefPubMedGoogle Scholar
  7. 7.
    Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., Yamashita, K., Umena, Y., Nakabayashi, M., Yamane, T., Nakano, T., Suzuki, M., Masuda, T., Inoue, S., Kimura, T., Nomura, T., Yonekura, S., Yu, L.-J., Sakamoto, T., Motomura, T., Chen, J.-H., Kato, Y., Noguchi, T., Tono, K., Joti, Y., Kameshima, T., Hatsui, T., Nango, E., Tanaka, R., Naitow, H., Matsuura, Y., Yamashita, A., Yamamoto, M., Nureki, O., Yabashi, M., Ishikawa, T., Iwata, S., and Shen, J.-R., Nature, 2017, vol. 543, p.131.CrossRefPubMedGoogle Scholar
  8. 8.
    Elizarova, G.L. and Parmon, V.N., Fotokataliticheskoe preobrazovanie solnechnoi energii (Photocatalytic transformation of sun energy), part 2, Novosibirsk: Nauka, 1985.Google Scholar
  9. 9.
    Mills, A., Chem. Soc. Rev., 1989, vol. 18, p.285.CrossRefGoogle Scholar
  10. 10.
    Ruttinger, W. and Dismukes, C.G., Chem. Rev., 1997, vol. 97, no. 1, p.1.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, X. and Wang, F., Coord. Chem. Rev., 2012, vol. 256, nos 11–12, p. 1115.CrossRefGoogle Scholar
  12. 12.
    Yamazaki, H., Shouji, A., Kajita, M., and Yagi, M., Coord. Chem. Rev., 2010, vol. 254, nos. 21–22, p. 2483.CrossRefGoogle Scholar
  13. 13.
    Liu, X., Inagaki, S., and Gong, J., Angew. Chem. Int. Ed. Engl., 2016, vol. 55, p. 14924.CrossRefPubMedGoogle Scholar
  14. 14.
    Collin, J.P. and Sauvage, J.P., Inorg. Chem., 1986, vol. 25, p.135.CrossRefGoogle Scholar
  15. 15.
    Hunter, B.M., Gray, H.B., and Muller, A.M., Chem. Rev., 2016, vol. 116, p. 14120.CrossRefPubMedGoogle Scholar
  16. 16.
    Najafpour, M.M., Ghobadi, M.Z., Haghighi, B., Tomo, T., Shen, J.R., and Allakhverdiev, S.I., BBA–Bioenergetics, 2015, vol. 1847, no. Iss. 2, p.294.CrossRefGoogle Scholar
  17. 17.
    Zhou, H., Yan, R., Zhang, D., and Fan, T., Chem.-Eur. J., 2016, vol. 22, p.1.CrossRefGoogle Scholar
  18. 18.
    Yamamoto, M. and Tanaka, K., ChemPlusChem, 2016, vol. 81, p.1.CrossRefGoogle Scholar
  19. 19.
    Sartorel, A., Carraro, M., Scorrano, G., Zorzi, R.D., Geremia, S., McDaniel, N.D., Bernhard, S., and Bonchio, M., J. Am. Chem. Soc., 2008, vol. 130, no. 15, p. 5006.CrossRefPubMedGoogle Scholar
  20. 20.
    Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Maizlish, V.E., and Parmon, V.N., React. Kinet. Catal. Lett., 1981, vol. 16, nos. 2–3, p.285.CrossRefGoogle Scholar
  21. 21.
    Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Parmon, V.N., and Zamaraev, K.I., React. Kinet. Catal. Lett., 1981, vol. 16, nos. 2-3, p.191.CrossRefGoogle Scholar
  22. 22.
    Elizarova, G.L., Zhidomirov, G.M., and Parmon, V.N., Catal. Today, 2000, vol. 58, no. 2, p.71.CrossRefGoogle Scholar
  23. 23.
    Parmon, V.N., Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., and Maizlish, V.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, vol. 8, p. 1735.Google Scholar
  24. 24.
    Elizarova, G.L., Matvienko, L.G., Parmon, V.N., and Zamaraev, K.I., Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 4, p.863.Google Scholar
  25. 25.
    Zoski, C.G., Handbook of Electrochemistry, Boston: Elsevier, 2007.Google Scholar
  26. 26.
    Aiso, K., Takeuchi, R., Masaki, T., Chandra, D., Saito, K., Yui, T., and Yagi, M., ChemSusChem, 2017, vol. 10, p.687.CrossRefPubMedGoogle Scholar
  27. 27.
    Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., Davis, R.C., Bargar, J.R., Norskov, J.K., Nilsson, A., and Bell, A.T., J. Am. Chem. Soc., 2015, vol. 137, p. 1305.CrossRefPubMedGoogle Scholar
  28. 28.
    Singh, A., Fekete, M., Gengenbach, T., Simonov, A.N., Hocking, R.K., Chang, S.L.Y., Rothmann, M., Powar, S., Fu, D., Hu, Z., Wu, Q., Cheng, Y.-B., Bach, U., and Spiccia, L., ChemSusChem, 2015, vol. 8, p. 4266.CrossRefPubMedGoogle Scholar
  29. 29.
    Singh Gujral, S., Simonov, A.N., Fang, X.-Y., Higashi, M., Gengenbach, T., Abe, R., and Spiccia, L., Catal. Sci. Technol., 2016, vol. 6, no. 11, p. 3745.CrossRefGoogle Scholar
  30. 30.
    Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Parmon, V.N., and Moroz, E.M., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1990, vol. 3, p.86.Google Scholar
  31. 31.
    Elizarova, G.L., Matvienko, L.G., and Parmon, V.N., J. Mol. Catal., 1987, vol. 43, p.171.CrossRefGoogle Scholar
  32. 32.
    Elizarova, G.L., Matvienko, L.G., Taran, O.P., Parmon, V.N., and Kolomiichuk, V.N., Kinet. Katal., 1992, vol. 33, no. 4, p.898.Google Scholar
  33. 33.
    Young, I.D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F.D., Koroidov, S., Brewster, A.S., Tran, R., Alonso-Mori, R., Kroll, T., Michels-Clark, T., Laksmono, H., Sierra, R.G., Stan, C.A., Hussein, R., Zhang, M., Douthit, L., Kubin, M., Lichtenberg, C., Pham, L.V., Nilsson, H., Cheah, M.H., Shevela, D., Saracini, C., and Bean, M.A., Nature, 2016, vol. 540, p.453.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Elizarova, G.L., Matvienko, L.G., Pestunova, O.P., and Parmon, V.N., Kinet. Katal., 1994, vol. 35, no. 3, p.362.Google Scholar
  35. 35.
    Elizarova, G.L., Matvienko, L.G., Kuznetsov, V.L., Kochubey, D.I., and Parmon, V.N., J. Mol. Catal. A. Chem., 1995, vol. 103, p.43.CrossRefGoogle Scholar
  36. 36.
    Elizarova, G.L., Zhidomirov, G.M., and Parmon, V.N., Catal. Today, 2000, vol. 58, p.71.CrossRefGoogle Scholar
  37. 37.
    Chikunov, A.S., Taran, O.P., and Parmon, V.N., Proc. 21 Int. Conf. on Photochemical Conversation and Storage of Solar Energy, St. Peterburg: SPBU, 2016, p.54.Google Scholar
  38. 38.
    Elizarova, G.L., Gerasimov, O.V., Matvienko, L.G., Lozhkina, N.V., and Parmon, V.N., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1990, vol. 3, p.94.Google Scholar
  39. 39.
    Pestunova, O.P., Elizarova, G.L., Gerasimov, O.V., and Parmon, V.N., Kinet. Katal., 2000, vol. 41, no. 3, p.375.CrossRefGoogle Scholar
  40. 40.
    Khannanov, N.K., Khramov, A.V., Moravskii, A.P., and Shafirovich, V.Ya., Kinet. Katal., 1983, vol. 24, no. 4, p.858.Google Scholar
  41. 41.
    Pendlebury, S.R., Barroso, M., Cowan, A.J., Sivula, K., Tang, J., Gratzel, M., Klug, D., and Durrant, J.R., Chem. Commun., 2011, vol. 47, no. 2, p.716.CrossRefGoogle Scholar
  42. 42.
    Barroso, M., Pendlebury, S.R., Cowan, A.J., and Durrant, J.R., Chem. Sci., 2013, vol. 4, no. 7, p. 2724.CrossRefGoogle Scholar
  43. 43.
    Young, K.M.H., Klahr, B.M., Zandi, O., and Hamann, T.W., Catal. Sci. Technol., 2013, vol. 3, no. 7, p. 1660.CrossRefGoogle Scholar
  44. 44.
    Cristensen, P.A., Harriman, A., Porter, G., and Neta, P., J. Chem. Soc. Faraday Trans. II, 1984, vol. 80, p. 1451.CrossRefGoogle Scholar
  45. 45.
    Gerasimov, O.V., Lymar, S.V., and Parmon, V.N., J. Photochem. Photobiol. A. Chem., 1991, vol. 56, p.275.CrossRefGoogle Scholar
  46. 46.
    Gerasimov, O.V., Lymar, S.V., Tsvetkov, T.M., and Parmon, V.N., React. Kinet. Catal. Lett., 1987, vol. 36, p.145.CrossRefGoogle Scholar
  47. 47.
    Li, X. and Siegbahn, P.E.M., J. Am. Chem. Soc., 2013, vol. 135, p. 13804.CrossRefPubMedGoogle Scholar
  48. 48.
    Kok, B., Forbush, B., and Mcgloin, M., Photochem. Photobiol., 1970, vol. 11, no. 6, p.457.CrossRefPubMedGoogle Scholar
  49. 49.
    Filatov, M.J., Elizarova, G.L., Gerasimov, O.V., Zhidomirov, G.M., and Parmon, V.N., J. Mol. Catal., 1994, vol. 91, p.71.CrossRefGoogle Scholar
  50. 50.
    Wang, L.-P. and Van Voorhis, T., J. Phys. Chem. Lett. Am. Chem. Soc., 2011, vol. 2, no. 17, p. 2200.Google Scholar
  51. 51.
    Mavros, M.G., Tsuchimochi, T., Kowalchuk, T., Mclsaac, A., Wang, L.-P., and Voorhis, T.V., Inorg. Chem. Am. Chem. Soc., 2014, vol. 53, no. 13, p. 6386.CrossRefGoogle Scholar
  52. 52.
    Shubin, A.A., Ruzankin, S.P., Zilberberg, I.L., and Parmon, V.N., Chem. Phys. Lett., 2015, vol. 640, p.94.CrossRefGoogle Scholar
  53. 53.
    Zilberberg, I.L., Shubin, A.A., Ruzankin, S.P., Kovalskii, V.Y., Ovchinnikov, D.A., and Parmon, V.N., AIP Conf. Proc., 2016, p. 20027.Google Scholar
  54. 54.
    Shubin, A.A., Ruzankin, S.P., Zilberberg, I.L., Taran, O.P., and Parmon, V.N., Chem. Phys. Lett., 2015, vol. 619, p.126.CrossRefGoogle Scholar
  55. 55.
    Liao, R.-Z. and Siegbahn, P.E.M., J. Photochem. Photobiol., 2015, vol. 152, p.162.CrossRefGoogle Scholar
  56. 56.
    Dietl, N., Schlangen, M., and Schwarz, H., Angew. Chem. Int. Ed. Engl., 2012, vol. 51, p. 5544.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Chikunov
    • 1
  • O. P. Taran
    • 1
    • 2
  • A. A. Shubin
    • 1
    • 3
  • I. L. Zilberberg
    • 1
    • 3
  • V. N. Parmon
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations