Advertisement

Kinetics and Catalysis

, Volume 58, Issue 5, pp 610–621 | Cite as

Effect of the support composition on the physicochemical properties of Ni/Ce1–x La x O y catalysts and their activity in an autothermal methane reforming reaction

  • E. V. MatusEmail author
  • D. V. Nefedova
  • V. V. Kuznetsov
  • V. A. Ushakov
  • O. A. Stonkus
  • I. Z. Ismagilov
  • M. A. Kerzhentsev
  • Z. R. Ismagilov
Article

Abstract

The effect of the Ce1–x La x O y (x = 0–1, 1.5 ≤ y ≤ 2.0) support composition on the physicochemical properties of supported Ni catalysts and their activity in autothermal methane reforming was studied. The textural and structural characteristics of Ce1–x La x O y and Ni/Ce1–x La x O y samples and the process of their reduction in an atmosphere of hydrogen were examined using a set of techniques (low-temperature nitrogen adsorption, X-ray diffraction analysis, transmission electron microscopy, and thermal analysis). It was established that the Ce1–x La x O y supports (x = 0–0.9) are mesoporous materials containing a fluorite-like solid solution based on cerium dioxide, in which the unit cell parameter increases and the average crystallite size decreases with the mole fraction of La. It was shown that the average size and composition of Ni-containing particles in the Ni/Ce1–x La x O y catalysts depends on the composition of the support: at x = 0–0.8, a phase of NiO was formed, whereas a phase of LaNiO3 was formed at x = 0.9–1. The dispersity of the active constituent and its stability to agglomeration increased as the mole fraction of La in the Ce1–x La x O y support was increased from 0 to 0.8, whereas the reduction of Ni-containing oxide particles shifted to the higher temperature region. The Ni/Ce1–x La x O y catalysts provided high methane conversion (96–100%) and the yield of H2 (35–55%). The yield of hydrogen increased with decreasing the mole fraction of La in the Ce1–x La x O y support composition; this can be caused by a decrease in the fraction of difficult-to-reduce Ni n+ cations due to the weakening of metal–support interactions.

Keywords

Ni catalysts cerium dioxide autothermal reforming methane synthesis gas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidation Reactions of Methane), Moscow: Nauka, 1998.Google Scholar
  2. 2.
    Horn, R. and Schlogl, R., Catal. Lett., 2015, vol. 145, p. 23.CrossRefGoogle Scholar
  3. 3.
    Ismagilov, Z.R., Matus, E.V., Kerzhentsev, M.A., Tsikoza, L.T., Ismagilov, I.Z., Dosumov, K.D., and Mustafin, A.G., Pet. Chem., 2011, vol. 51, p. 174.CrossRefGoogle Scholar
  4. 4.
    Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjodt, N.C., Sehested, J., and Thomsen, S.G., J. Nat. Gas Sci. Eng., 2011, vol. 3, p. 423.CrossRefGoogle Scholar
  5. 5.
    Kee, R.J., Karakaya, C., and Zhu, H., Proc. Combust. Inst., 2017, vol. 36. p. 51.CrossRefGoogle Scholar
  6. 6.
    Nahar, G. and Dupont, V., Recent Patents Chem. Eng., 2013, vol. 6, p. 8.CrossRefGoogle Scholar
  7. 7.
    Enger, B.C., Lodeng, R., and Holmen, A., Appl. Catal., A, 2008, vol. 346, p. 1.CrossRefGoogle Scholar
  8. 8.
    Angeli, S.D., Monteleone, G., Giaconia, A., and Lemonidou, A.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 1979.CrossRefGoogle Scholar
  9. 9.
    Santoa, V.D., Gallo, A., Naldoni, A., Guidotti, M., and Psaro, R., Catal. Today, 2012, vol. 197, p. 190.CrossRefGoogle Scholar
  10. 10.
    Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Russ. J. Gen. Chem., 2009, vol. 79, p. 1252.CrossRefGoogle Scholar
  11. 11.
    Krylova, A.V. and Mikhailichenko, A.I., Katal. Promsti., 2005, vol. 3, p. 3.Google Scholar
  12. 12.
    Montini, T., Melchionna, M., Monai, M., and Fornasiero, P., Chem. Rev., 2016, vol. 116, p. 5987.CrossRefGoogle Scholar
  13. 13.
    Nahar, G. and Dupont, V., Renewable Sustainable Energy Rev., 2014, vol. 32, p. 777.CrossRefGoogle Scholar
  14. 14.
    Ismagilov, Z.R., Kuznetsov, V.V., Okhlopkova, L.B., Tsikoza, L.T., and Yashnik, S.A., Oksidy titana, tseriya, tsirkoniya, ittriya, alyuminiya: Svoistva, primenenie i metody polucheniya (Titanium, Cerium, Zirconium, Yttrium, and Aluminum Oxides: Properties, Applications, and Synthesis Methods), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2010.Google Scholar
  15. 15.
    Kuznetsova, T.G. and Sadykov, V.A., Kinet. Catal., 2008, vol. 49, no. 6, p. 840.CrossRefGoogle Scholar
  16. 16.
    Ivanov, V.K., Polezhaeva, O.S., and Tret’yakov, Yu.D., Russ. J. Gen. Chem., 2010, vol. 80, p. 604.CrossRefGoogle Scholar
  17. 17.
    Vinodkumar, T., Rao, B.G., and Reddy, B.M., Catal. Today, 2015, vol. 253, p. 57.CrossRefGoogle Scholar
  18. 18.
    Xiao, G., Li, S., Li, H., and Chen, L., Microporous Mesoporous Mater., 2009, vol. 120, p. 426.CrossRefGoogle Scholar
  19. 19.
    Kaneko, H., Taku, S., and Tamaura, Y., Solar Energy, 2011, vol. 85, p. 2321.CrossRefGoogle Scholar
  20. 20.
    Han, X., Yu, Y., He, Y., and Shan, W., Int. J. Hydrogen Energy, 2013, vol. 38, p. 10293.CrossRefGoogle Scholar
  21. 21.
    Zhang, B., Li, D., and Wang, X., Catal. Today, 2010, vol. 158, p. 348.CrossRefGoogle Scholar
  22. 22.
    Hernandez, W.Y., Laguna, O.H., Centeno, M.A., and Odriozola, J.A., J. Solid State Chem., 2011, vol. 184, p. 3014.CrossRefGoogle Scholar
  23. 23.
    Wu, L., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y.M., Welch, D.O., and Suenaga, M., Phys. Rev. B, 2004, vol. 69, p. 125415.CrossRefGoogle Scholar
  24. 24.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.CrossRefGoogle Scholar
  25. 25.
    Pino, L., Vita, A., Lagana, M., and Recupero, V., Appl. Catal., B, 2014, vol. 148–149, p. 91.CrossRefGoogle Scholar
  26. 26.
    Liu, F., Zhao, L., Wang, H., Bai, X., and Liu, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 10454.CrossRefGoogle Scholar
  27. 27.
    Han, X., Yu, Y., He, H., Zhao, J., and Wang, Y., J. Power. Sources, 2013, vol. 238, p. 57.CrossRefGoogle Scholar
  28. 28.
    Cao, L., Pan, L., Ni, C., Yuan, Z., and Wang, S., Fuel. Process. Technol., 2010, vol. 91, p. 306.CrossRefGoogle Scholar
  29. 29.
    Salazar-Villalpando, M.D. and Reyes, B., Int. J. Hydrogen Energy, 2009, vol. 34, p. 9723.CrossRefGoogle Scholar
  30. 30.
    Malyutin, A.V., Mikhailichenko, A.I., Zubavichus, Ya.V., Murzin, V.Yu., Koshkin, A.G., and Sokolov, I.V., Kinet. Catal., 2015, vol. 56, no. 1, p. 89.CrossRefGoogle Scholar
  31. 31.
    Karatzas, X., Jansson, K., Gonzá lez, A., Dawody, J., and Pettersson, L.J., Appl. Catal., B, 2011, vol. 106, p. 476.CrossRefGoogle Scholar
  32. 32.
    Ke, J., Xiao, J.-W., Zhu, W., Liu, H., Si, R., Zhang, Y.-W., and Yan, C.-H., J. Am. Chem. Soc., 2013, vol. 135, p. 15191.CrossRefGoogle Scholar
  33. 33.
    Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Kuznetsova, T.G., Prosvirin, I.P., Sadykov, V.A., Schuurman, Y., van Veen, A.C., and Mirodatos, C., Chem. Eng. J., 2014, vol. 257, p. 281.CrossRefGoogle Scholar
  34. 34.
    Moroz, E.M., Russ. Chem. Rev., 2011, vol. 80, p. 293.CrossRefGoogle Scholar
  35. 35.
    Fan, J., Wu, X., Yang, L., and Weng, D., Catal. Today, 2007, vol. 126, p. 303.CrossRefGoogle Scholar
  36. 36.
    Kerzhentsev, M.A., Matus, E.V., Ismagilov, I.Z., Ushakov, V.A., Stonkus, O.A., Larina, T.V., Kozlova, G.S., Bharali, P., and Ismagilov, Z.R., J. Struct. Chem., 2017, vol. 1, p. 126.CrossRefGoogle Scholar
  37. 37.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 481, p. 104.CrossRefGoogle Scholar
  38. 38.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, I.P., Mota, N., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.CrossRefGoogle Scholar
  39. 39.
    Nguyen-Phan, T.-D., Song, M.B., Kim, E.J., and Shin, E.W., Microporpus Mesoporous Mater., 2009, vol. 119, p. 290.CrossRefGoogle Scholar
  40. 40.
    Zhang, T., Tang, D., Shao, Y., and Yu, Z., J. Mater. Eng. Perform., 2010, vol. 19, p. 1220.CrossRefGoogle Scholar
  41. 41.
    Gong, W.-P., Zhang, R., and Chen, Z.-S., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.CrossRefGoogle Scholar
  42. 42.
    Katta, L., Sudarsanam, P., Thrimurthulu, G., and Reddy, B.M., Appl. Catal., B, 2010, vol. 101, p. 101.CrossRefGoogle Scholar
  43. 43.
    Yu, Q., Wu, X., Tang, C., Qi, L., Liu, B., Gao, F., Sun, K., Dong, L., and Chen, Y., J. Colloid Interface Sci., 2011, vol. 354, p. 341.CrossRefGoogle Scholar
  44. 44.
    Yao, X., Tang, C., Ji, Z., Dai, Y., Cao, Y., Gao, F., Dong, L., and Chen, Y., Catal. Sci. Technol., 2013, vol. 3, p. 688.CrossRefGoogle Scholar
  45. 45.
    Wilkes, M.F., Hayden, P., and Bhattacharya, A.K., J. Catal., 2003, vol. 219, p. 305.CrossRefGoogle Scholar
  46. 46.
    Zhu, T. and Flytzani-Stephanopoulos, M., Appl. Catal., A, 2001, vol. 208, p. 403.CrossRefGoogle Scholar
  47. 47.
    Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, P., and Monzon, A., Catal. Today, 2000, vol. 63, p. 71.CrossRefGoogle Scholar
  48. 48.
    Pengpanich, S., Meeyoo, V., and Rirksomboon, T., Catal. Today, 2004, vols. 93–95, p. 95.CrossRefGoogle Scholar
  49. 49.
    Escritori, J.C., Dantas, S.C., Soares, R.R., and Hori, C.E., Catal. Commun., 2009, vol. 10, p. 1090.CrossRefGoogle Scholar
  50. 50.
    Takeguchi, T., Furukawa, S.N., Inoue, M., and Eguchi, K., Appl. Catal., A, 2003, vol. 240, p. 223.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Matus
    • 1
    Email author
  • D. V. Nefedova
    • 1
    • 2
  • V. V. Kuznetsov
    • 1
  • V. A. Ushakov
    • 1
  • O. A. Stonkus
    • 1
    • 3
  • I. Z. Ismagilov
    • 1
  • M. A. Kerzhentsev
    • 1
  • Z. R. Ismagilov
    • 1
    • 4
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.National Research Novosibirsk State UniversityNovosibirskRussia
  4. 4.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations