Advertisement

Kinetics and Catalysis

, Volume 58, Issue 5, pp 601–609 | Cite as

Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas

  • M. A. Kerzhentsev
  • E. V. MatusEmail author
  • I. A. Rundau
  • V. V. Kuznetsov
  • I. Z. Ismagilov
  • V. A. Ushakov
  • S. A. Yashnik
  • Z. R. Ismagilov
Article

Abstract

The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.

Keywords

Ni–Pd catalysts aluminum oxide autothermal reforming methane hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navarro, R.M., Guil, R., and Fierro, J.L.G., in Compendium of Hydrogen Energy, vol. 1: Hydrogen Production and Purification, Amsterdam: Elsevier, 2015, p. 21.CrossRefGoogle Scholar
  2. 2.
    Balat, M., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4013.CrossRefGoogle Scholar
  3. 3.
    Mueller-Langer, F., Tzimas, E., Kaltschmitt, M., and Peteves, S., Int. J. Hydrogen Energy, 2007, vol. 32, p. 3797.CrossRefGoogle Scholar
  4. 4.
    Muradov, N.Z. and Veziroglu, T.N., Int. J. Hydrogen Energy, 2008, vol. 33, p. 6804.CrossRefGoogle Scholar
  5. 5.
    Ball, M. and Wietschel, M., Int. J. Hydrogen Energy, 2009, vol. 34, p. 615.CrossRefGoogle Scholar
  6. 6.
    Katikaneni, S.P., Al-Muhaish, F., Harale, A., and Pham, T.V., Int. J. Hydrogen Energy, 2014, vol. 39, p. 4331.CrossRefGoogle Scholar
  7. 7.
    García, L., in Compendium of Hydrogen Energy, vol. 1: Hydrogen Production and Purification, Amsterdam: Elsevier, 2015, p. 83.CrossRefGoogle Scholar
  8. 8.
    Holladay, J.D., Hu, J., King, D.L., and Wang, Y., Catal. Today, 2009, vol. 139, p. 244.CrossRefGoogle Scholar
  9. 9.
    Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: Krasand, 2011.Google Scholar
  10. 10.
    Dal Santo, V., Gallo, A., Naldoni, A., Guidotti, M., and Psaro, R., Catal. Today, 2012, vol. 197, p. 190.CrossRefGoogle Scholar
  11. 11.
    Nakagawa, D., Li, Y., and Tomishige, K., Appl. Catal., A, 2011, vol. 408, p. 1.CrossRefGoogle Scholar
  12. 12.
    Angeli, S.D., Monteleone, G., Giaconia, A., and Lemonidou, A.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 1979.CrossRefGoogle Scholar
  13. 13.
    LeValley, T.L., Richard, A.R., and Fan, M., Int. J. Hydrogen Energy, 2014, vol. 39, p. 16983.CrossRefGoogle Scholar
  14. 14.
    Nahar, G. and Dupont, V., Resent Pat. Chem. Eng., 2013, vol. 6, p. 8.CrossRefGoogle Scholar
  15. 15.
    Li, D., Shishido, M., Oumi, Y., Sano, T., and Takehira, K., Appl. Catal., A, 2007, vol. 332, p. 98.CrossRefGoogle Scholar
  16. 16.
    Miyata, T., Li, D., Shiraga, M., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., Appl. Catal., A, 2006, vol. 310, p. 97.CrossRefGoogle Scholar
  17. 17.
    Chin, Y.-H., King, D.L., Roh, H.-S., Wang, Y., and Heald, S.M., J. Catal., 2006, vol. 244, p. 153.CrossRefGoogle Scholar
  18. 18.
    Xie, C., Chen, Y., Li, Y., Wang, X., and Song, C., Appl. Catal., A, 2010, vol. 390, p. 210.CrossRefGoogle Scholar
  19. 19.
    Luna, E.C., Becerra, A.M., and Dimitrijewits, M.I., React. Kinet. Catal. Lett., 1999, vol. 67, p. 247.CrossRefGoogle Scholar
  20. 20.
    Yoshida, K., Begum, N., Ito, S.-I., and Tomishige, K., Appl. Catal., A, 2009, vol. 358, p. 186.CrossRefGoogle Scholar
  21. 21.
    Dantas, S.C., Escritori, J.C., Soares, R.R., and Hori, C.E., Chem. Eng. J., 2010, vol. 156, p. 380.CrossRefGoogle Scholar
  22. 22.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 481, p. 104.CrossRefGoogle Scholar
  23. 23.
    Garcia-Dieguez, M., Finocchio, E., Larrubia, M.A., Alemany, L.J., and Busca, G., J. Catal., 2010, vol. 274, p. 11.CrossRefGoogle Scholar
  24. 24.
    Yoshida, K., Okumura, K., Miyao, T., Naito, S., Ito, S.-I., Kunimori, K., and Tomishige, K., Appl. Catal., A, 2008, vol. 351, p. 217.CrossRefGoogle Scholar
  25. 25.
    Lakhapatri, S.L. and Abraham, M.A., Appl. Catal., A, 2011, vol. 405, p. 149.CrossRefGoogle Scholar
  26. 26.
    Morales-Cano, F., Lundegaard, L.F., Tiruvalam, R.R., Falsig, H., and Skjoth-Rasmussen, M.S., Appl. Catal., A, 2015, vol. 498, p. 117.CrossRefGoogle Scholar
  27. 27.
    Gokaliler, F., Gocmen, B.A., and Aksoylu, A.E., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4358.CrossRefGoogle Scholar
  28. 28.
    Mukainakano, Y., Li, B., Kado, S., Miyazawa, T., Okumura, K., Miyao, T., Naito, S., Kunimori, K., and Tomishige, K., Appl. Catal., A, 2007, vol. 318, p. 252.CrossRefGoogle Scholar
  29. 29.
    Ismagilov, I.Z., Matus, E.V., Nefedova, D.V., Kuznetsov, V.V., Yashnik, S.A., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2015, vol. 56, no. 3, p. 394.CrossRefGoogle Scholar
  30. 30.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, I.P., Mota, N., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.CrossRefGoogle Scholar
  31. 31.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.CrossRefGoogle Scholar
  32. 32.
    Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, D., and Monzon, A., Catal. Today, 2000, vol. 63, p. 71.CrossRefGoogle Scholar
  33. 33.
    Lisboa, J.S., Terra, L.E., Silva, P.R.J., Saitovitch, H., and Passos, F.B., Fuel Process. Technol., 2011, vol. 92, p. 2075.CrossRefGoogle Scholar
  34. 34.
    Abreu, A.J., Lucredio, A.F., and Assaf, E.M., Fuel Process. Technol., 2012, vol. 102, p. 140.CrossRefGoogle Scholar
  35. 35.
    Tsipouriari, V.A. and Verykios, X.E., Catal. Today, 2001, vol. 64, p. 83.CrossRefGoogle Scholar
  36. 36.
    Dias, J.A.C. and Assaf, J.M., Appl. Catal., A, 2008, vol. 334, p. 243.CrossRefGoogle Scholar
  37. 37.
    Wang, Y.H. and Zhang, J.C., Fuel, 2005, vol. 84, p. 1926.CrossRefGoogle Scholar
  38. 38.
    Xiulan, C., Yuanxing, C., and Weiming, L., J. Nat. Gas Chem., 2008, vol. 17, p. 201.CrossRefGoogle Scholar
  39. 39.
    Hufschmidt, D., Bobadill, L.F., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A., Montes, M., and Falabella, E., Catal. Today, 2010, vol. 149, p. 394.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Kerzhentsev
    • 1
  • E. V. Matus
    • 1
    Email author
  • I. A. Rundau
    • 1
    • 2
  • V. V. Kuznetsov
    • 1
  • I. Z. Ismagilov
    • 1
  • V. A. Ushakov
    • 1
  • S. A. Yashnik
    • 1
  • Z. R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations