Advertisement

Kinetics and Catalysis

, Volume 58, Issue 5, pp 622–629 | Cite as

Ethylene production by the oxidative condensation of methane in the presence of MnMW/SiO2 catalysts (M = Na, K, and Rb)

  • I. Z. Ismagilov
  • E. V. MatusEmail author
  • V. S. Popkova
  • V. V. Kuznetsov
  • V. A. Ushakov
  • S. A. Yashnik
  • I. P. Prosvirin
  • M. A. Kerzhentsev
  • Z. R. Ismagilov
Article

Abstract

The samples of MnMW/SiO2 (M = Na, K, and Rb) were synthesized using various synthesis methods under varied heat treatment conditions and their physicochemical properties and activity in the reaction of the oxidative condensation of methane (OCM) were studied for the development of an effective catalyst for the resource-saving process of natural gas conversion into ethylene. It was found that the preparation method exerts an effect on the textural characteristics of the samples and the reducing properties of the cations of manganese and tungsten. It was determined that the composition of a W-containing phase depends on the alkali metal, and a ratio between the polymorphous modifications of SiO2 is controlled by the method of synthesis and the conditions of catalyst heat treatment. It was established that the yield of C2 hydrocarbons in the OCM reaction increased with the use of incipient wetness impregnation instead of the method of mixing with a suspension for catalyst preparation and with an increase in the catalyst heat treatment temperature from 700 to 1000°C. The optimum composition of the catalyst and the condition of its synthesis were found: 2Mn0.8Na3W/SiO2 obtained by the impregnation method and calcined at 1000°C ensured the yield of target products of ~20% with a CH4 conversion of ~35% at a reaction temperature of 850°C.

Keywords

MnMW/SiO2 catalysts (M = Na, W, and Rb) oxidative condensation methane ethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Men'shikov, V.A. and Sinev, M.Yu., Katal. Prom–sti., 2005, vol. 1, p. 25.Google Scholar
  2. 2.
    Bortolozzi, J.P., Banus, E.D., Courtalon, N.L., Ulla, M.A., Milt, V.G., and Miro, E.E., Catal. Today, 2016, vol. 273, p. 252.CrossRefGoogle Scholar
  3. 3.
    Gavrilenko, V., Plastik, 2014, vol. 137, no. 8, p. 48.Google Scholar
  4. 4.
    Masiran, N., Vo, D.-V.N., Salam, Md.A., and Abdullah, B., Procedia Eng., 2016, vol. 148, p. 1289.CrossRefGoogle Scholar
  5. 5.
    Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: Krasand, 2011.Google Scholar
  6. 6.
    Treger, Yu.A. and Rozanov, V.N., Rev. J. Chem., 2016, vol. 6, no. 1, p. 83.CrossRefGoogle Scholar
  7. 7.
    Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Ross. Khim. Zh., 2008, vol. 52, no. 4, p. 22.Google Scholar
  8. 8.
    Karakaya, C. and Kee, R.J., Prog. Energy. Combust. Sci., 2016, vol. 55, p. 60.CrossRefGoogle Scholar
  9. 9.
    Kondratenko, E.V., Schlü ter, M., Baerns, M., Linkea, D., and Holena, M., Catal. Sci. Technol., 2015, vol. 5, p. 1668.CrossRefGoogle Scholar
  10. 10.
    Zavyalova, U., Holeň a, M., Schlö gl, R., and Baerns, M., ChemCatChem, 2011, vol. 3, p. 1935.CrossRefGoogle Scholar
  11. 11.
    Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., and Schomacker, R., Appl. Catal., A, 2012, vol. 425-426, p. 53.CrossRefGoogle Scholar
  12. 12.
    Galadima, A. and Muraza, O., J. Ind. Eng. Chem., 2016, vol. 37, p. 1.CrossRefGoogle Scholar
  13. 13.
    Ismagilov, I.Z., Matus, E.V., Kerzhentsev, M.A., Prosvirin, I.P., Navarro, R.M., Fierro, J.L.G., Gerritsen, G., Abbenhuis, E., and Ismagilov, Z.R., Eurasian Chem.-Technol. J., 2015, vol. 17, p. 105.CrossRefGoogle Scholar
  14. 14.
    Ismagilov, I.Z., Matus, E.V., Vasil’ev, S.D., Kuznetsov, V.V., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2015, vol. 56, no. 4, p. 456.CrossRefGoogle Scholar
  15. 15.
    Ivanov, D.V., Isupova, L.A., Gerasimov, E.Yu., Dovlitova, L.S., Glazneva, T.S., and Prosvirin, I.P., Appl. Catal., A, 2014, vol. 485, p. 10.CrossRefGoogle Scholar
  16. 16.
    Alexiadis, V.I., Chaar, M., van Veen, A., Muhler, M., Thybaut, J.W., and Marin, G.B., Appl. Catal., B, 2016, vol. 199, p. 252.CrossRefGoogle Scholar
  17. 17.
    Koirala, R., Buchel, R., Pratsinis, S.E., and Baiker, A., Appl. Catal., A, 2014, vol. 484, p. 97.CrossRefGoogle Scholar
  18. 18.
    Elkins, T.W. and Hagelin-Weaver, H.E., Appl. Catal., A, 2015, vol. 497, p. 96.CrossRefGoogle Scholar
  19. 19.
    Hiyoshi, N. and Ikeda, T., Fuel Process. Technol., 2015, vol. 133, p. 29.CrossRefGoogle Scholar
  20. 20.
    Gordienko, Y., Usmanov, T., Bychkov, V., Lomonosov, V., Fattakhova, Z., Tulenin, Y., Shashkin, D., and Sinev, M., Catal. Today, 2016, vol. 278, p. 127.CrossRefGoogle Scholar
  21. 21.
    Palermo, A., Vazquez, J., Lee, A., Tikhov, M., and Lambertz, R., J. Catal., 1998, vol. 177, p. 259.CrossRefGoogle Scholar
  22. 22.
    Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomäcker, R., and Arndt, S., Catal. Today, 2014, vol. 228, p. 5.CrossRefGoogle Scholar
  23. 23.
    Hou, S., Cao, Y., Xiong, W., Liu, H., and Kou, Y., Ind. Eng. Chem. Res., 2006, vol. 45, p. 7077.CrossRefGoogle Scholar
  24. 24.
    Jiang, Z., Gong, H., and Li, S., Stud. Surf. Sci. Catal., 1997, vol. 112, p. 481.CrossRefGoogle Scholar
  25. 25.
    Kou, Y., Zhang, B., Niu, J., Li, S., Wang, H., Tanaka, T., and Yoshida, S., J. Catal., 1998, vol. 173, p. 399.CrossRefGoogle Scholar
  26. 26.
    Jiang, Z., Yu, C., Fang, X., Li, S., and Wang, H., J. Phys. Chem., 1993, vol. 97, p. 12870.CrossRefGoogle Scholar
  27. 27.
    Wu, J. and Li, S., J. Phys. Chem., 1995, vol. 99, p. 4566.CrossRefGoogle Scholar
  28. 28.
    Ji, S., Xiao, T., Li, S., Xu, C., Hou, R., and Coleman, K., J. Catal., 2003, vol. 220, p. 47.CrossRefGoogle Scholar
  29. 29.
    Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Appl. Catal., A, 2011, vol. 406, p. 1.CrossRefGoogle Scholar
  30. 30.
    Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol’tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., Dokl. Phys. Chem., 2008, vol. 419, part 2, p. 73.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Chou, L., Zhang, B., Song, H., Zhao, J., Yang, J., and Li, S., J. Mol. Catal. A: Chem., 2006, vol. 245, p. 272.CrossRefGoogle Scholar
  32. 32.
    Godini, H.R., Gili, A., Görke, O., Arndt, S., Simon, U., Thomas, A., Schomä cker, R., and Wozny, G., Catal. Today, 2014, vol. 236, p. 12.CrossRefGoogle Scholar
  33. 33.
    Nipan, G.D., Inorg. Mater., 2014, vol. 50, no. 10, p. 1012.CrossRefGoogle Scholar
  34. 34.
    Ismagilov, I.Z., Matus, E.V., Nefedova, D.V., Kuznetsov, V.V., Yashnik, S.A., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Katal., 2015, vol. 56, no. 3, p. 397.CrossRefGoogle Scholar
  35. 35.
    Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, p. 129.CrossRefGoogle Scholar
  36. 36.
    Bobkova, N.M., Fizicheskaya khimiya silikatov i tugoplavkikh soedinenii (Physical Chemistry of Silicates and Refractory Compounds), Minsk: Vysheishaya Shkola, 1984.Google Scholar
  37. 37.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidation Reactions of Methane), Moscow: Nauka, 1998.Google Scholar
  38. 38.
    Vasil'eva, N.A. and Buyanov, R.A., Obz. Zh. Khim., 2011, vol. 1, no. 4, p. 334.Google Scholar
  39. 39.
    Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2013, vol. 58, p. 887.CrossRefGoogle Scholar
  40. 40.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Larina, T.V., Prosvirin, I.P., Navarro, R.M., Fierro, J.L.G., Gerritsen, G., Abbenhuis, H.C.L., and Ismagilov, Z.R., Eurasian Chem. Technol. J., 2016, vol. 18, no. 2, p. 93.CrossRefGoogle Scholar
  41. 41.
    Fleischer, V., Steuer, R., Parishan, S., and Schomäcker, R., J. Catal., 2016, vol. 341, p. 91.CrossRefGoogle Scholar
  42. 42.
    Jeon, W., Lee, J.Y., Lee, M., Choi, J.-W., Ha, J.-M., Suh, D.J., and Kim, I.W., Appl. Catal., A, 2013, vols. 464–465, p. 68.CrossRefGoogle Scholar
  43. 43.
    Malekzadeh, A., Dalai, A.K., Khodadadi, A., and Mortazavi, Y., Catal. Commun., 2008, vol. 9, p. 960.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. Z. Ismagilov
    • 1
  • E. V. Matus
    • 1
    Email author
  • V. S. Popkova
    • 1
    • 2
  • V. V. Kuznetsov
    • 1
  • V. A. Ushakov
    • 1
  • S. A. Yashnik
    • 1
  • I. P. Prosvirin
    • 1
  • M. A. Kerzhentsev
    • 1
  • Z. R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations