Advertisement

Kinetics and Catalysis

, Volume 58, Issue 3, pp 219–226 | Cite as

Reactivity of haloalkanes in their reactions with the chlorine atom

  • E. T. Denisov
  • T. G. Denisova
Article

Abstract

Experimental kinetic data on reactions of the chlorine atom with halogenated derivatives of methane and ethane (37 reactions) have been analyzed by the intersecting-parabolas method. The following five factors have an effect on the activation energy of these reactions: the enthalpy of reaction, triplet repulsion, the electronegativities of the reaction center atoms, the dipole–dipole and multidipole interactions between the reaction center and polar groups, and the effect of π electrons in the vicinity of the reaction center. The increments characterizing the contribution from each factor to the activation energy of the reaction have been calculated. The contribution from the polar interaction, ΔE μ, to the activation energy depends on the dipole moment of the polar group and obeys the following empirical equation: ln(ΔE μ/Σμ) = −0.74 + 0.87(ΔE μ/Σμ) − 0.084(ΔE μ/Σμ)2.

Keywords

chlorine atom halogenated hydrocarbons rate constants intersecting-parabolas model polar interaction reactivity triplet repulsion electronegativity activation energy enthalpy of reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Istoriya ucheniya o khimicheskom protsesse (History of Chemical Process Science), Solov’ev, Yu.I., Ed., Moscow, Nauka, 1981.Google Scholar
  2. 2.
    Tedder, J.M., Nechvatal, A., and Jubb, A.H., Basic Organic Chemistry, part 5 Industrial Products, London: Wiley, 1975.Google Scholar
  3. 3.
    Denisov, E.T., Sarkisov, O.M., and Likhtenshtein, G.I., Chemical Kinetics: Fundamentals and New Developments, Amsterdam Elsevier, 2003.Google Scholar
  4. 4.
    CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton, FL: CRC. 2004–2005, 85th ed.Google Scholar
  5. 5.
    Kerr, J.A., in Metathetical Reactions of Atoms and Radicals, Comprehensive Chemical Kinetics, vol. 18, Bamford, C.H. and Tipper, C.F.H, Eds., Amsterdam: Elsevier, 1976, p. 39.Google Scholar
  6. 6.
    Denisov, E.T., Chem. Phys. Rep., 1992, vol. 11, no. 10, p. 1321.Google Scholar
  7. 7.
    Denisov, E.T., Russ. Chem. Rev., 1997, vol. 74, no. 9, p. 859.CrossRefGoogle Scholar
  8. 8.
    Luo, Y.-R., Handbook of Bond Dissociation Energies in Organic Compounds, Boca Raton, FL CRC, 2003.Google Scholar
  9. 9.
    Pauling, L., General Chemistry, San Francisco Freeman, 1970.Google Scholar
  10. 10.
    NIST Standard Reference Database 19A: Positive Ion Energetics, Ver. 2.02, Gaithersburg, Md. National Inst. of Standards and Technology, 2003.Google Scholar
  11. 11.
    NIST Standard Reference Database 17: Chemical Kinetics Database, Ver. 6.0, Gaithersburg, MD, National Inst. of Standards and Technology, 1994.Google Scholar
  12. 12.
    DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, F.R., Kolb, C.E., and Molina, M.J., JPL Publication 97-4, 1997.Google Scholar
  13. 13.
    Maricq, M.M., Shi, J., Szente, J.J., Rimai, L., and Kaiser, E.N., J. Phys. Chem., 1993, vol. 97, p. 9686.CrossRefGoogle Scholar
  14. 14.
    Senkan, S.V. and Quam, D., J. Phys. Chem., 1992, vol. 96, p. 10837.CrossRefGoogle Scholar
  15. 15.
    Olsson, B.E.R., Hallquist, M., Ljungstrom, E., and Davidson, I., Int. J. Chem. Kinet., 1997, vol. 29, p. 195.CrossRefGoogle Scholar
  16. 16.
    Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., and Troe, J., J. Phys. Chem. Ref. Data, 1997, vol. 26, p. 521.CrossRefGoogle Scholar
  17. 17.
    Nielsen, O.J., Sidebottom, H.W., O’Farrell, D.J., Donlon, M., and Treacy, J., Chem. Phys. Lett., 1989, vol. 156, p. 312.CrossRefGoogle Scholar
  18. 18.
    Catoire, V., Lesclaux, R., Schneider, W.F., and Wallington, T.J., J. Phys. Chem., 1996, vol. 100, p. 14356.CrossRefGoogle Scholar
  19. 19.
    Tschuikov-Roux, E., Faraji, F., Paddington, S., Niedrielski, J., and Miyokawa, K., J. Phys. Chem. A, 1998, vol. 92, p. 1488.CrossRefGoogle Scholar
  20. 20.
    Tschuikov-Roux, E. and Niedrielski, J., J. Photochem., 1984, vol. 27, p. 141.CrossRefGoogle Scholar
  21. 21.
    Mogelberg, T.E., Bilde, M., Sehested, J., Wallington, T.J., and Nielsen, O.J., J. Phys. Chem., 1996, vol. 100, p. 18399.CrossRefGoogle Scholar
  22. 22.
    Wallington, T.J., Hurley, M.D., and Schneider, W.F., Chem. Phys. Lett., 1996, vol. 251, p. 164.CrossRefGoogle Scholar
  23. 23.
    NIST Standard Reference Database 17: Chemical Kinetics Database, Ver. 2.01, Gaithersburg, MD, National Inst. of Standards and Technology, 1990.Google Scholar
  24. 24.
    Talhaoui, A., Louis, F., Devolder, P., Meriaux, B., and Saverysyn, J.P., J. Phys. Chem., 1996, vol. 100, p. 13531.CrossRefGoogle Scholar
  25. 25.
    Mogelberg, T.E., Sehested, J., Bilde, M., Wallington, T.J., and Nielsen, O.J., J. Phys. Chem., 1996, vol. 100, p. 8882.CrossRefGoogle Scholar
  26. 26.
    Catoire, V., Ariya, P.A., Niki, H., and Harris, G.W., Int. J. Chem. Kinet., 1997, vol. 29, p. 6995.Google Scholar
  27. 27.
    Drozdova, T.I., Denisov, E.T., Shestakov, A.F., and Emel’yanova, N.S., Kinet. Catal., 2006, vol. 47, no. 1, p. 106.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations