Advertisement

Kinetics and Catalysis

, Volume 57, Issue 5, pp 592–601 | Cite as

A comparative study on catalytic performance of modified nanocrystalline and microcrystalline zeolite X for synthesis of cumene by transalkylation of 1,4-diisopropylbenzene with benzene

  • R. Thakur
  • S. Barman
Article
  • 40 Downloads

Abstract

Cumene is a commercially important product in the petrochemical industries. In isopropylation of benzene, 1,4-diisopropyl benzene (1,4-DIPB) is produced as low value by-product. This low value by-product DIPB is used to maximize the production of commercially important product cumene by transalkylation reaction. Reduction of crystal size in zeolite can increase surface area of the external surface and in this way bring about substantial changes in catalytic activity. Moreover modification with rare-earth metal enhances the acidity of zeolite. In this work, nanocrystalline and microcrystalline zeolite X were modified with cerium to study the combine effect of crystal size and ion modification of zeolite on selectivity of cumene in commercially important transalkylation reaction. Benzene and 1,4-diisopropylbenzene in a molar ratio of 1 to 12.5 were subjected to vapour-phase reaction in the temperature range of 498 to 593 K at atmospheric pressure with space time of 5.27–10.54 kg h/kmol. Nanosized crystalline zeolite gives much higher conversions of 1,4-DIPB than microcrystalline zeolite. Over cerium modified nanosized zeolite CeXN 81.85% conversion of 1,4-DIPB and 97% cumene selectivity were achieved. It was found that stability and activity of CeXN for cumene synthesis was much higher than that of CeXM zeolite. Kinetic constants for the reactions were estimated and the activation energies for various reactions over CeXM were determined. The activation enegy for transalkylation reaction was found to be 78.54 kJ/mol.

Keywords

cerium nanosized crystalline X zeolite transalkylation cumene kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ercan, C.F., Dautzenberg, M., Yeh, C.Y., and Barner, H.E., Ind. Eng. Chem. Res., 1998, vol. 37, p. 1724.CrossRefGoogle Scholar
  2. 2.
    Eur. Patent Appl. EP 629599 A1, 1994.Google Scholar
  3. 3.
    Medina-Valtierra, J., Zaldivar, O., Sánchez, M.A., Montoya, J.A., Navarrete, J., and Reyes, J.A., Appl. Catal., A, 1998, vol. 166, p. 387.CrossRefGoogle Scholar
  4. 4.
    Barman, S., Pradhan, N.C., and Maity, S.K., Chem. Eng. J., 2005, vol. 114, p. 39.CrossRefGoogle Scholar
  5. 5.
    Geatti, A., Lenarda, M., Storaro, L., Ganzerla, R., and Perissinotto, M.J., J. Mol. Catal. A: Chem., 1997, vol. 121, p. 111.CrossRefGoogle Scholar
  6. 6.
    Meima, G.R., CATTECH, 1998, vol. 2, p. 5.Google Scholar
  7. 7.
    Eur. Patent Appl. EP 1949227 A1, 1999. Google Scholar
  8. 8.
    Reddy, K.S.N., Rao, B.S., and Shiralkar, V.P., Appl. Catal., A, 1993, vol. 95, p. 53.CrossRefGoogle Scholar
  9. 9.
    Pradhan, A.R. and Rao, B.S., Appl. Catal., A, 1993, vol. 106, p. 143.CrossRefGoogle Scholar
  10. 10.
    Suresh, R., Rajadhyaksya, A.R., and Kumbhar, P.S., J. Chem. Technol. Biotechnol., 1995, vol. 62, p. 268.CrossRefGoogle Scholar
  11. 11.
    Lei, Z., Li, C., Li, J., and Chen, B., Sep. Purif. Technol., 2004, vol. 34, p. 265.CrossRefGoogle Scholar
  12. 12.
    Barman, S. and Pradhan, N.C., Ind. Eng. Chem. Res., 2005, vol. 44, p. 7313.CrossRefGoogle Scholar
  13. 13.
    Khalil, K.J., J. Colloid Interface Sci., 2007, vol. 315, p. 562.CrossRefGoogle Scholar
  14. 14.
    Schmidt, I., Madsen, C., and Jacobsen, C.J.H., Inorg. Chem., 2000, vol. 39, p. 2279.CrossRefGoogle Scholar
  15. 15.
    Chauhan, Y.P. and Talib, M., Sci. Rev. Chem. Commun., 2012, vol. 2, p. 12.Google Scholar
  16. 16.
    Naidu, K.G.S., Maity, S., Pradhan, N.C., and Patwardhan, A.V., CHEMCON-2006, Ankleshwar, Gujarat, India, 2006, p. 23.Google Scholar
  17. 17.
    US Patent 4375574, 1983. Google Scholar
  18. 18.
    Kodamudi, K. and Upadhyula, S., J. Chem. Technol. Biotechnol., 2008, vol. 83, p. 699.CrossRefGoogle Scholar
  19. 19.
    Rabo, J.A., Pickert, P.E., Stamires, D.N., and Boyle, J.E., Chem. Abstr., 1961, vol. 55, p. 652.Google Scholar
  20. 20.
    Venuto, P.B., Hamilton, L.A., Landis, P.S., and Wise, J.J., J. Catal., 1966, vol. 5, p. 81.CrossRefGoogle Scholar
  21. 21.
    Rabo, J.A., Angell, C.L., and Schomaker, V., Proc. 4th int. Congr. on Catalysis, Moscow, 1968, p. 96.Google Scholar
  22. 22.
    Hunter, F.D. and Scherzer, J., J. Catal., 1971, vol. 20, p. 246.CrossRefGoogle Scholar
  23. 23.
    Mirzabekova, S.R., Dorogochinskii, A.Z., and Mortikov, E.S., Chem. Technol. Fuels Oil, 1977, vol. 13, p. 840.CrossRefGoogle Scholar
  24. 24.
    Haag, W.O., Lago, R.M., and Weisz, P.B., Nature, 1984, vol. 309, p. 589.CrossRefGoogle Scholar
  25. 25.
    Sotelo, J.L., Calvo, L., Pérez-Velázquez, A., Cavani, F., and Bolognini, M.A., Appl. Catal., A, 2006, vol. 312, p. 194.CrossRefGoogle Scholar
  26. 26.
    Bozga, G., Lupascu, M., Zaharia, E., and Malacea, R., 12th Romanian Int. Conf. on Chemistry and Chemical Engineering, Bucharest, 2001, p. 344.Google Scholar
  27. 27.
    Yang, H., Liu, Z., Gao, H., and Xie, Z., Appl. Catal., A, 2010, vol. 379, p. 166.CrossRefGoogle Scholar
  28. 28.
    Mahdi, F. and Abdolreza, A., Int. J. Ind. Chem., 2011, vol. 2, p. 140.Google Scholar
  29. 29.
    Plank, C.J., Rosinski, E.J., and Hawthorne, W.P., Ind. Eng. Chem. Res., 1964, vol. 3, p. 165.CrossRefGoogle Scholar
  30. 30.
    Press, W.H., Numerical Recipes in Pascal, Cambridge: Cambridge Univ. Press, 1986.Google Scholar
  31. 31.
    Forni, L., Cremona, G., Missineo, F., Bellusi, G., Perego, C., and Pazzuconi, G., Appl. Catal., A, 1995, vol. 121, p. 261.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. Thakur
    • 1
  • S. Barman
    • 2
  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia
  2. 2.Department of Chemical EngineeringThapar University, PatialaPunjabIndia

Personalised recommendations