Advertisement

Kinetics and Catalysis

, Volume 56, Issue 5, pp 631–639 | Cite as

Trinuclear tantalum clusters grafted to hydroxylated silica surfaces: A density-functional embedded-cluster study

  • V. A. Nasluzov
  • Shane M. Parker
  • A. Genest
  • A. M. Shor
  • E. A. Ivanova-ShorEmail author
  • Notker Rösch
2ND Russian Congress on Catalysis—Russcatalysis (Samara, (October 2–5, 2014)

Abstract

To identify the coordination modes of bare and hydrogenated trinuclear tantalum species on hydroxylated silica, we computationally examined models of Ta3H n (n = 0, 3, 5–9) species grafted to a β-cris-tobalite surface. Ta3H n clusters are bound to the surface by substitution of hydrogen atoms of vicinal (…O-)3SiOH and geminal (…O-)2Si(OH)2 groups via three and six, respectively, Ta–O bonds of ~193 pm on average, in both types of models. The maximum Ta–O coordination number of non-hydrogenated Ta3 species to a silica surface is seven for the second type model surface; the additional Ta–O bond is due to an oxygen atom located in a bridging position to Ta–Ta bond. In the latter case, the mean Ta–O bond distance to one of =Si(O–)2 group is increased by 15 pm. For the complexes bound via vicinal silanol groups, each additional unit of hydrogen loading on the metal elongated the average Ta–Ta distance by ~2 pm, covering a range of 258–277 pm. For the most stable hydrogenated trimers, Ta3H9, the desorption energies of hydrogen atoms are relatively high, above 70 kJ/mol. The average Ta–Ta distances increase by ~19 pm on going from the complex (=SiO–)3Ta3H9 to complex (=SiO–)3Ta3 and by ~5 pm when the hydrogen loading is increased by one unit for (=Si(O–)2)3Ta3H n complexes, reaching the maximum value 319 pm when n = 9. The desorption energies of hydrogen atoms for the most stable tantalum trimer species grafted to the surface by geminal silanol groups, (=Si(O–)2)3Ta3H7, are rather low, less than 40 kJ/mol.

Keywords

Zeolite Tantalum Desorption Energy EXAFS Data Formal Oxidation State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guzman, J. and Gates, B.C., Dalton Trans., 2003, p. 3303.Google Scholar
  2. 2.
    Flytzani-Stephanopoulos, M. and Gates, B.C., Annu. Rev. Chem. Biomol, 2012, vol. 3, p. 545.CrossRefGoogle Scholar
  3. 3.
    Gillis-D'Hamers I., Philippaerts, J., van der Voort, P., and Vansant, E., J. Chem. Soc., Faraday Trans., 1990, vol. 86, p. 3747.CrossRefGoogle Scholar
  4. 4.
    Basset, J.-M., Lefebvre, F., and Santini, C., Coord. Chem. Rev., 1998, vol. 178–180, p. 1703.CrossRefGoogle Scholar
  5. 5.
    Tanaka, M., Itadani, A., Kuroda, Y., and Iwamoto, M., J. Phys. Chem. C, 2012, vol. 116, p. 5664.CrossRefGoogle Scholar
  6. 6.
    Soulivong, D., Norsic, S., Taoufik, M., Coperet, C., Thivolle-Cazat, J., Chakka, S., and Basset, J.-M., J. Am. Chem. Soc., 2008, vol. 130, p. 5044.CrossRefGoogle Scholar
  7. 7.
    Corker, J., Lefebvre, F., Lecuyer, C., Dufaud, V., Quignard, F., Choplin, A., Evans, J., and Basset, J.-M., Science, 1996, vol. 271, p. 966.CrossRefGoogle Scholar
  8. 8.
    Vidal, V., Theolier, A., Thivolle-Cazat, J., Basset, J.-M., and Corker, J., J. Am. Chem. Soc., 1996, vol. 118, p. 4595.CrossRefGoogle Scholar
  9. 9.
    Mikhailov, M.N. and Kustov, L.M., Russ. Chem. Bull., 2005, vol. 54, p. 300.CrossRefGoogle Scholar
  10. 10.
    Soignier, S., Taoufik, M., Le Roux, E., Saggio, G., Dablemont, C., Baudouin, A., Lefebvre, F., de Mallmann, A., Thivolle-Cazat, J., Basset, J.-M., Sunley, G., and Maunders, B.M., Organometallics, 2006, vol. 25, p. 1569.CrossRefGoogle Scholar
  11. 11.
    Solans-Monfort, X., Chow, C., Goure, E., Kaya, Y., Basset, J.-M., Taoufik, M., Quadrelli, E.A., and Eisenstein, O., Inorg. Chem., 2012, vol. 51, p. 7237.CrossRefGoogle Scholar
  12. 12.
    Nemana, S. and Gates, B.C., J. Chem. Soc., Chem. Commun., 2006, p. 3996.Google Scholar
  13. 13.
    Nemana, S. and Gates, B.C., Catal. Lett., 2007, vol. 113, p. 73.CrossRefGoogle Scholar
  14. 14.
    Veith, G.M., Lupini, A.R., Rashkeev, S., Pennycook, S.J., Mullins, D.R., Schwartz, V., Bridges, C.A., and Dudney, N.J., J. Catal., 2009, vol. 262, p. 92.CrossRefGoogle Scholar
  15. 15.
    Lee, E.L. and Wachs, I.E., J. Phys. Chem., C, 2007, vol. 111, p. 14410.CrossRefGoogle Scholar
  16. 16.
    Keller, D.E., Airaksinen, S.M.K., Krause, A.O., Weckhuysen, B.M., and Koningsberger, D.C., J. Am. Chem. Soc., 2007, vol. 129, p. 3189.CrossRefGoogle Scholar
  17. 17.
    Islam, M.M., Costa, D., Calatayud, M., and Tielens, F., J. Phys. Chem., vol. 113, p. 10740.Google Scholar
  18. 18.
    Tanaka, T., Nojima, H., Yamamoto, T., Takenaka, S., Funabiki, T., and Yoshida, S., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 5235.CrossRefGoogle Scholar
  19. 19.
    Baltes, M., Kytokivi, A., Weckhuysen, B.M., Schoonheydt, R.A., van der Voort, P., and Vansant, E.F., J. Phys. Chem. B, 2001, vol. 105, p. 6211.CrossRefGoogle Scholar
  20. 20.
    Moisii, C., Deguns, E.W., Lita, A., Callahan, S.D., van de Burgt, L.J., Magana, D., and Stiegman, A.E., Chem. Mater., 2006, vol. 18, p. 3965.CrossRefGoogle Scholar
  21. 21.
    Chempath, S., Zhang, Y., and Bell, A.T., J. Phys. Chem. C, 2007, vol. 111, p. 1291.CrossRefGoogle Scholar
  22. 22.
    Zhu, K., Hu, J., and Richards, R., Catal. Lett., 2005, vol. 100, p. 195.CrossRefGoogle Scholar
  23. 23.
    Garrot, J.-M., Lepetit, C., Che, M., and Chaquin, P., J. Phys. Chem. A, 2001, vol. 105, p. 9445.CrossRefGoogle Scholar
  24. 24.
    Nasluzov, V.A., Ivanova-Shor, E.A., Shor, A.M., Yudanov, I.V., and Rösch, N., Kinet. Catal., 2010, vol. 51, p. 832.CrossRefGoogle Scholar
  25. 25.
    Rösch, N., Nasluzov, V.A., Neyman, K.M., Pacchioni, G., and Vayssilov, G.N., in Computational Materials Science, Theoretical and Computational Chemistry Series, vol. 15, Leszczynski, J., Ed., Amsterdam: Elsevier, 2004, p. 367.CrossRefGoogle Scholar
  26. 26.
    Babaian-Kibala, E., Cotton, F.A., and Shang, M., Inorg. Chem., 1990, vol. 29, p. 5148.CrossRefGoogle Scholar
  27. 27.
    Cotton, F.A. and Shang, M., Inorg. Chem., 1993, vol. 32, p. 969.CrossRefGoogle Scholar
  28. 28.
    Nemana, S. and Gates, B.C., Langmuir, 2006, vol. 22, p. 8214.CrossRefGoogle Scholar
  29. 29.
    Nemana, S. and Gates, B.C., J. Phys. Chem. B, 2006, vol. 110, p. 17546.CrossRefGoogle Scholar
  30. 30.
    Nemana, S., Sun, J., and Gates, B.C., J. Phys. Chem., vol. 112, p. 7477.Google Scholar
  31. 31.
    Guesmi, H. and Tielens, F., J. Phys. Chem. C, 2008, vol. 116, p. 994.CrossRefGoogle Scholar
  32. 32.
    Lim, K.H., Zakharieva, O., Shor, A.M., and Rösch, N., Chem. Phys. Lett., 2007, vol. 444, p. 280.CrossRefGoogle Scholar
  33. 33.
    Shor, A.M., Ivanova-Shor, E.A., Laletina, S.S., Nasluzov, V.A., and Rösch, N., Surf. Sci., 2010, vol. 604, p. 1705.CrossRefGoogle Scholar
  34. 34.
    Shor, E.A., Nasluzov, V.A., Shor, A.M., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2007, vol. 111, p. 12340.CrossRefGoogle Scholar
  35. 35.
    Shor A.M., Ivanova Shor, E.A., Laletina, S., Nasluzov, V.A., Vayssilov, G.N., and Rösch, N., Chem. Phys., 2009, vol. 363, p. 33.CrossRefGoogle Scholar
  36. 36.
    Vayssilov, G.N., Petrova, G.P., Shor, E.A., Nasluzov, V.A., Shor, A.M., Petkov, P.S., and Rösch, N., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5879.CrossRefGoogle Scholar
  37. 37.
    Dunlap, B.I. and Rösch, N., Adv. Quantum Chem., 1990, vol. 21, p. 317.CrossRefGoogle Scholar
  38. 38.
    Belling, T., Grauschopf, T., Krüger, S., Mayer, M., Nörtemann, F., Staufer, M., Zenger, C., and Rösch, N., in High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science and Engineering, vol. 8, Bungartz, H.-J., Durst, F., Zenger, C, Eds., Heidelberg: Springer, 1999, p. 439.Google Scholar
  39. 39.
    Belling, T., Grauschopf, T., Krüger, S., Nörtemann, F., Staufer, M., Mayer, M., Nasluzov, V.A., Birkenheuer, U., Hu, A., Matveev, A.V., Shor, A.M., FuchsRohr, M.S.K., Neyman, K.M., Ganyushin, D.I., Kerdcharoen, T., et al., ParaGauss version, p. 1.Google Scholar
  40. 40.
    Häberlen, O.D. and Rösch, N., Chem. Phys. Lett., 1992, vol. 199, p. 491.CrossRefGoogle Scholar
  41. 41.
    Rösch, N., Matveev, A.V., Nasluzov, V.A., Neyman, K.M., Moskaleva, L.V., and Krüger, S., in Relativistic Electronic Structure Theory: Applications, Schwerdtfeger, P, Ed., Amsterdam: Elsevier, 2004, p. 656.Google Scholar
  42. 42.
    Nasluzov, V.A., Ivanova, E.A., Shor, A.M., Vayssilov, G.N., Birkenheuer, U., and Rösch, N., J. Phys. Chem. B, 2003, vol. 107, p. 2228.CrossRefGoogle Scholar
  43. 43.
    Shor, A.M., Ivanova-Shor, E.A., Nasluzov, V.A., Vayssilov, G.N., and Rösch, N., J. Theor. Comput. Chem., 2007, vol. 3, p. 2290.CrossRefGoogle Scholar
  44. 44.
    Nasluzov, V.A., Rivanenkov, V.V., Gordienko, A.B., Neyman, K.M., Birkenheuer, U., and Rösch, N., J. Chem. Phys., 2001, vol. 115, p. 8157.CrossRefGoogle Scholar
  45. 45.
    Becke, A.D., Phys. Rev. A: At. Mol. Opt. Phys., 1988, vol. 38, p. 3098.CrossRefGoogle Scholar
  46. 46.
    Perdew, J.P., Phys. Rev. B: Condens. Matter, 1986, vol. 33, p. 8822.CrossRefGoogle Scholar
  47. 47.
    Yudanov, I., Pacchioni, G., Neyman, K., and Rösch, N., J. Phys. Chem. B, 1997, vol. 101, p. 2786.CrossRefGoogle Scholar
  48. 48.
    Wright, A.F. and Leadbetter, A.J., Philos. Mag., 1975, vol. 31, p. 1391.CrossRefGoogle Scholar
  49. 49.
    Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, p. 553.CrossRefGoogle Scholar
  50. 50.
    Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2007, vol. 111, p. 14484.CrossRefGoogle Scholar
  51. 51.
    Pyykkö, P. and Atsumi, M., Chem. Eur. J., 2009, vol. 15, p. 186.CrossRefGoogle Scholar
  52. 52.
    Vayssilov, G.N. and Rösch, N., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 4019.CrossRefGoogle Scholar
  53. 53.
    Petkov, P.S., Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2010, vol. 114, p. 8500.CrossRefGoogle Scholar
  54. 54.
    Kip, B.J., Duivenvoorden, F.B.M., Koningsberger, D.C., and Prins, R., J. Catal., 1987, vol. 105, p. 26.CrossRefGoogle Scholar
  55. 55.
    Liu, X., Dilger, H., Eichel, R.A., Kunstmann, J., and Roduner, E., J. Phys. Chem. B, 2006, vol. 110, p. 2013.CrossRefGoogle Scholar
  56. 56.
    Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2008, vol. 112, p. 18572.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Nasluzov
    • 1
  • Shane M. Parker
    • 2
  • A. Genest
    • 2
  • A. M. Shor
    • 1
  • E. A. Ivanova-Shor
    • 1
    Email author
  • Notker Rösch
    • 2
  1. 1.Institute of Chemistry and Chemical TechnologySiberian Branch of Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Department Chemie and Catalysis Research CenterTechnische Universitát MünchenGarchingGermany

Personalised recommendations