Kinetics and Catalysis

, Volume 56, Issue 4, pp 456–465 | Cite as

Oxidative condensation of methane in the presence of modified MnNaW/SiO2 catalysts

  • I. Z. Ismagilov
  • E. V. MatusEmail author
  • S. D. Vasil’ev
  • V. V. Kuznetsov
  • M. A. Kerzhentsev
  • Z. R. Ismagilov
“Catalysis: From Science to Industry,” III International School-Conference for Young Scientists (Tomsk, October 26–30, 2014)


The effects of cationic (Ce, Zr, and La) and anionic (S, P, and Cl) admixtures on the activity and physicochemical properties of MnNaW/SiO2 were studied in order to optimize the composition of a catalyst for the oxidative condensation of methane (OCM). It was found that OCM process characteristics can be regulated by varying the type (Ce, Zr, La, S, P, and Cl) and concentration (0.5–5 wt %) of a modifying admixture. For the modified MnNaW/SiO2 catalysts, the yield of the target reaction products increased in the following order of modifying admixtures: S < Zr < P < Ce < La < Cl. The addition of lanthanum, cerium, or phosphorus admixtures insignificantly affected the activity of the MnNaW/SiO2 catalyst, whereas the introduction of sulfur or zirconium led to a decrease in the yield of C2 hydrocarbons. Modification with chlorine improved process characteristics and shifted a maximum yield of C2 hydrocarbons to the low-temperature region. It was established that the introduction of lanthanum considerably improved the stability of catalyst operation. The catalyst composition 2Mn-1.6Na-3.1W-2La/SiO2 was developed to afford a 22% yield of target C2 hydrocarbons at a 54% conversion of methane after a 24-h reaction performed under optimum conditions (reaction temperature, 800°C; reaction mixture flow rate, 117 mL min−1g Cat −1 and O2/CH4 molar ratio, 0.5).


oxidative condensation methane MnNaW/SiO2 catalysts modifying admixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: KRASAND, 2011.Google Scholar
  2. 2.
    Ismagilov, Z.R., Matus, E.V., Kerzhentsev, M.A., Tsikoza, L.T., Ismagilov, I.Z., Dosumov, K.D., and Mustafin, A.G., Pet. Chem., 2011, vol. 51, p. 174.CrossRefGoogle Scholar
  3. 3.
    Elbashir, N.O., Mirodatos, C., Holmen, A., and Bukur, D.B., Catal. Today, 2014, vol. 228, p. 1.CrossRefGoogle Scholar
  4. 4.
    Ismagilov, Z.R., Matus, E.V., and Tsikoza, L.T., Energy Environ. Sci., 2008, vol. 1, p. 526.CrossRefGoogle Scholar
  5. 5.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Methane Oxidation Reactions), Moscow: Nauka, 1998.Google Scholar
  6. 6.
    Men’shchikov, V.A. and Sinev, M.Yu., Katal. Prom-sti., 2005, vol. 1, p. 25.Google Scholar
  7. 7.
    Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., and Schomacker, R., Appl. Catal., A, 2012, vols. 425–426, p. 53.CrossRefGoogle Scholar
  8. 8.
    Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Appl. Catal., A, 2011, vol. 406, p. 1.CrossRefGoogle Scholar
  9. 9.
    Olivier, L., Haag, S., Pennemann, H., Hofmann, C., Mirodatos, C., and Veen, A.C., Catal. Today, 2008, vol. 137, p. 80.CrossRefGoogle Scholar
  10. 10.
    Pak, S., Qiu, P., and Lunsford, J.H., J. Catal., 1998, vol. 179, p. 222.CrossRefGoogle Scholar
  11. 11.
    Tiemersma, T.P., Tuinier, M.J., Gallucci, F., Kuipers, J.A.M., and van Sint Annaland, M., Appl. Catal., A, 2012, vols. 433–434, p. 96.CrossRefGoogle Scholar
  12. 12.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.CrossRefGoogle Scholar
  13. 13.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 4481, p. 104.CrossRefGoogle Scholar
  14. 14.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, N., Mota, I.P., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.CrossRefGoogle Scholar
  15. 15.
    Matus, E.V., Ismagilov, I.Z., Sukhova, O.B., Zaikovskii, V.I., Tsikoza, L.T., Ismagilov, Z.R., and Moulijn, J.A., Ind. Eng. Chem. Res., 2007, vol. 46, p. 4063.CrossRefGoogle Scholar
  16. 16.
    Matus, E.V., Sukhova, O.B., Ismagilov, I.Z., Tsikoza, L.T., and Ismagilov, Z.R., React. Kinet. Catal. Lett., 2009, vol. 98, p. 59.CrossRefGoogle Scholar
  17. 17.
    Lomonosov, V.I., Gordienko, Yu.A., and Sinev, M.Yu., Kinet. Catal., 2013, vol. 54, no. 4, p. 451.CrossRefGoogle Scholar
  18. 18.
    Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomacker, R., and Arndt, S., Catal. Today, 2014, vol. 228, p. 5.CrossRefGoogle Scholar
  19. 19.
    Zavyalova, U., Holena, M., Schlogl, R., and Baerns, M., ChemCatChem, 2011, vol. 3, p. 1935.CrossRefGoogle Scholar
  20. 20.
    Ji, S.F., Xiao, T.C., Li, S.B., Xu, C.Z., Hou, R.L., Coleman, K.S., and Green, M.L.H., Appl. Catal., A, 2002, vol. 225, p. 271.CrossRefGoogle Scholar
  21. 21.
    Wu, J., Zhang, H., Qin, S., and Hu, C., Appl. Catal., A, 2007, vol. 323, p. 126.CrossRefGoogle Scholar
  22. 22.
    Chou, L.J., Cai, Y.C., Zhang, B., Niu, J.Z., Ji, S.F., and Li, S.B., Chem. Commun., 2002, p. 996.Google Scholar
  23. 23.
    Chou, L.J., Cai, Y.C., Zhang, B., Niu, J.Z., Ji, S.F., and Li, S.B., Appl. Catal., A, 2003, vol. 238, p. 185.CrossRefGoogle Scholar
  24. 24.
    Shahri, S.M.K. and Pour, A.N., J. Nat. Gas Chem., 2010, vol. 19, p. 47.CrossRefGoogle Scholar
  25. 25.
    Zheng, W., Cheng, D., Chen, F., and Zhan, X., J. Nat. Gas Chem., 2010, vol. 19, p. 515.CrossRefGoogle Scholar
  26. 26.
    Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol’tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., Dokl. Phys. Chem., 2008, vol. 419, p. 73.CrossRefGoogle Scholar
  27. 27.
    Nipan, G.D., Artyukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Dokl. Phys. Chem., 2014, vol. 455, p. 60.CrossRefGoogle Scholar
  28. 28.
    Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2013, vol. 58, p. 887.CrossRefGoogle Scholar
  29. 29.
    Tyunyaev, A.A., Nipan, G.D., Kol’tsova, T.N., Loktev, A.S., Ketsko, V.A., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2009, vol. 54, p. 664.CrossRefGoogle Scholar
  30. 30.
    Sinev, M.A., Doctoral (Chem.) Dissertation, Moscow: Semenov Institute of Chemical Physics, 2011.Google Scholar
  31. 31.
    Makhlin, V.A., Magomedova, M.V., Zyskin, A.G., Loktev, A.S., Dedov, A.G., and Moiseev, I.I., Kinet. Catal., 2011, vol. 52, no. 6, p. 914.CrossRefGoogle Scholar
  32. 32.
    Pak, S. and Lunsford, J.H., Appl. Catal., A, 1998, vol. 168, p. 131.CrossRefGoogle Scholar
  33. 33.
    Wang, D.J., Rosynek, M.P., and Lunsford, J.H., J. Catal., 1995, vol. 155, p. 390.CrossRefGoogle Scholar
  34. 34.
    Ahari, J.S., Sadeghi, M.T., and Zarrinpashne, S., J. Nat. Gas Chem., 2011, vol. 20, p. 204.CrossRefGoogle Scholar
  35. 35.
    Wang, L., Chou, L., Zhang, B., Song, H., Zhao, J., Yang, J., and Li, S., J. Mol. Catal. A: Chem., 2006, vol. 245, p. 272.CrossRefGoogle Scholar
  36. 36.
    Wang, X. and Li, S., Shiyou Huagong, 1997, vol. 26, p. 381.Google Scholar
  37. 37.
    Chua, Y.T., Mohamed, A.R., and Bhatia, S., Appl. Catal., A, 2008, vol. 343, p. 142.CrossRefGoogle Scholar
  38. 38.
    Chou, L., Cai, Y., Zhang, B., Niu, J., Ji, S., and Li, S., J. Nat. Gas Chem., 2002, vol. 11, p. 131.Google Scholar
  39. 39.
    Ehsani, M.R. and Ghoreishi, S.M., J. Ind. Eng. Chem., 2010, vol. 16, p. 923.CrossRefGoogle Scholar
  40. 40.
    Ioffe, L.M., Bosch, P., Viveros, T., Sanchez, H., and Borodko, Y.G., Mater. Chem. Phys., 1997, vol. 51, p. 269.CrossRefGoogle Scholar
  41. 41.
    Salehoun, V., Khodadadi, A., Mortazavi, Y., and Talebizadeh, A., Chem. Eng. Sci., 2008, vol. 63, p. 4910.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. Z. Ismagilov
    • 1
  • E. V. Matus
    • 1
    Email author
  • S. D. Vasil’ev
    • 1
    • 2
  • V. V. Kuznetsov
    • 1
  • M. A. Kerzhentsev
    • 1
  • Z. R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations