Advertisement

Kinetics and Catalysis

, Volume 56, Issue 4, pp 532–539 | Cite as

Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles

  • M. V. Grishin
  • A. K. Gatin
  • N. V. Dokhlikova
  • A. A. Kirsankin
  • A. I. Kulak
  • S. A. Nikolaev
  • B. R. Shub
II Russian Congress on Catalysis-Ruscatalysis (Samara, October 2–5, 2014)

Abstract

Crystalline 4- to 5-nm gold nanoparticles supported on graphite and oxidized silicon have been obtained by the impregnation method. Specific features of the adsorption and interaction of H2 and O2 on the Au surface have been investigated by scanning tunneling microscopy, Auger electron spectroscopy, and mass spectrometry. Hydrogen adsorbs dissociatively on separate Au nanoparticles. The Au-H bond energy is ∼1.7 eV. Oxygen adsorbs on the separate Au nanoparticles after hydrogen adsorption. The support nature has a significant effect on the reactivity of the H2 and O2 molecules adsorbed on the surface of the Au nanoparticles. A sufficient condition for water formation from oxygen and hydrogen on Au/SiO2/Si is that Au/SiO2/Si is exposed to H2 and then to O2. As distinct from what is observed for Au/SiO2/Si, water on the Au/graphite surface forms solely due to the successive adsorption of H2, O2, and H2.

Keywords

Au nanoparticles morphology adsorption activation H2 O2 H2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bone, W.A. and Wheeler, R.V., Philos. Trans. R. Soc. London, Ser. A, 1906, vol. 206, p. 1.CrossRefGoogle Scholar
  2. 2.
    Yolles, R.S., Wood, B.J., and Wise, H., J. Catal., 1971, vol. 21, p. 66.CrossRefGoogle Scholar
  3. 3.
    Bond, G.C. and Sermon, P.A., Gold Bull., 1973, no. 6, p. 102.Google Scholar
  4. 4.
    Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Chem. Lett., 1987, vol. 16, p. 405.CrossRefGoogle Scholar
  5. 5.
    Nikolaev, S.A., Smirnov, V.V., Vasil’kov, A.Yu., and Podshibikhin, V.L., Kinet. Catal., 2010, vol. 51, no. 3, p. 375.CrossRefGoogle Scholar
  6. 6.
    Nikolaev, S.A., Permyakov, N.A., Smirnov, V.V., Vasil’kov, A.Yu., and Lanin, S.N., Kinet. Catal., 2010, vol. 51, no. 2, p. 288.CrossRefGoogle Scholar
  7. 7.
    Simakova, I.L., Solkina, Yu.S., Moroz, B.L., Simakova, O.A., Reshetnikov, S.I., Prosvirin, I.P., Bukhtiyarov, V.I., Parmon, V.N., and Murzin, D.Yu., Appl. Catal., A, 2010, vol. 385, p. 136.CrossRefGoogle Scholar
  8. 8.
    Smirnov, V.V., Nikolaev, S.A., Murav’eva, G.P., Tyurina, L.A., and Vasil’kov, A.Yu., Kinet. Catal., 2007, vol. 48, no. 2, p. 265.CrossRefGoogle Scholar
  9. 9.
    Gómez-Quero, S., Cárdenas-Lizana, F., and Keane, M.A., J. Catal., 2013, vol. 303, p. 41.CrossRefGoogle Scholar
  10. 10.
    Cárdenas-Lizana, F., Lamey, D., Perret, N., Gómez-Quero, S., Kiwi-Minsker, L., and Keane, M.A., Catal. Commun., 2012, no. 21, p. 46.Google Scholar
  11. 11.
    Ellert, O.G., Tsodikov, M.V., Nikolaev, S.A., and Novotortsev, V.M., Russ. Chem. Rev., 2014, no. 83, p. 718.Google Scholar
  12. 12.
    Lakshmanan, P., Upare, P.P., Le, N.-T., Hwang, Y.K., Hwang, D.W., Lee, U-H., Kim, H.R., and Chang, J.-S., Appl. Catal., A, 2013, vol. 468, p. 260.CrossRefGoogle Scholar
  13. 13.
    Nikolaev, S.A., Chistyakov, A.V., Chudakova, M.V., Kriventsov, V.V., Yakimchuk, E.P., and Tsodikov, M.V., J. Catal., 2013, vol. 297, p. 296.CrossRefGoogle Scholar
  14. 14.
    Takei, T., Akita, T., Nakamura, I., Fujitani, T., Okumura, M., Okazaki, K., Huang, J., Ishida, T., and Haruta, M., Adv. Catal., 2012, vol. 55, p. 1.Google Scholar
  15. 15.
    Chen, M. and Goodman, D.W., Chem. Soc. Rev., 2008, vol. 37, p. 1860.CrossRefGoogle Scholar
  16. 16.
    Jiang, H.-L. and Xu, Q., J. Mater. Chem., 2011, vol. 21, p. 13705.CrossRefGoogle Scholar
  17. 17.
    Singh, A.K. and Xu, Q., ChemCatChem, 2013, vol. 5, p. 652.CrossRefGoogle Scholar
  18. 18.
    Bukhtiyarov, V.I., Russ. Chem. Rev., 2007, vol. 76, no. 6, p. 553.CrossRefGoogle Scholar
  19. 19.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 147.CrossRefGoogle Scholar
  20. 20.
    Miller, J.T., Kropf, A.J., Zha, Y., Regalbuto, J.R., Delannoy, L., Louis, C., Bus, E., and van Bokhoven, J.A., J. Catal., 2006, vol. 240, p. 222.CrossRefGoogle Scholar
  21. 21.
    Janssens, T.V.W., Clausen, B.S., Hvolbæk, B., Falsig, H., Christensen, C.H., Bligaard, T., and Nørskov, J.K., Top. Catal., 2007, vol. 44, nos. 1–2, p. 15.CrossRefGoogle Scholar
  22. 22.
    Campbell, C.T., Sharp, J.C., Yao, Y.X., Karp, E.M., and Silbaugh, T.L., Faraday Discuss., 2011, vol. 152, p. 227.CrossRefGoogle Scholar
  23. 23.
    Bukhtiyarov, A.B., Nartova, A.B., and Kvon, R.I., Kinet. Catal., 2011, vol. 52, no. 5, p. 756.CrossRefGoogle Scholar
  24. 24.
    Bukhtiyarov, A.V., Kvon, R.I., Nartova, A.V., and Bukhtiyarov, V.I., Russ. Chem. Bull., 2012, vol. 60, no. 10, p. 1977.CrossRefGoogle Scholar
  25. 25.
    Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2011, vol. 1, p. 1432.CrossRefGoogle Scholar
  26. 26.
    Baumer, M. and Freund, H.-J., Prog. Surf. Sci., 1999, vol. 61, p. 127.CrossRefGoogle Scholar
  27. 27.
    Choudhary, T.V. and Goodman, D.W., Appl. Catal., A, 2005, vol. 291, p. 32.CrossRefGoogle Scholar
  28. 28.
    Gatin, A.K., Grishin, M.V., Kirsankin, A.A., Trakhtenberg, L.I., and Shub, B.R., Nanotechnol. Russ., 2012, vol. 7, nos. 3–4, p. 122.CrossRefGoogle Scholar
  29. 29.
    Gatin, A.K., Grishin, M.V., Kirsankin, A.A., Kharitonov, V.A., and Shub, B.R., Nanotechnol. Russ., 2013, vol. 8, nos. 1–2, p. 36.CrossRefGoogle Scholar
  30. 30.
    Grishin, M.V., Gatin, A.K., Dokhlikova, N.V., Kirsankin, A.A., Kharitonov, V.A., and Shub, B.R., Russ. Chem. Bull., 2013, vol. 62, no. 7, p. 1525.CrossRefGoogle Scholar
  31. 31.
    Gatin, A.K., Grishin, M.V., Gurevich, S.A., Dokhlikova, N.V., Kirsankin, A.A., Kozhevin, V.M., Kolchenko, N.N., Rostovshchikova, T.N., Kharitonov, V.A., Shub, B.R., and Yavsin, D.A., Russ. Chem. Bull., 2014, vol. 63, no. 8, p. 1696.CrossRefGoogle Scholar
  32. 32.
    Gatin, A.K., Grishin, M.V., Kolchenko, N.N., Slutskii, V.G., Kharitonov, V.A., and Shub, B.R., Russ. Chem. Bull., 2014, vol. 63, no. 8, p. 1815.CrossRefGoogle Scholar
  33. 33.
    Kozhevin, V.M., Yavsin, D.A., Kouznetsov, V.M., Busov, V.M., Mikushkin, V.M., Nikonov, S.Yu., Gurevich, S.A., and Kolobov, A., J. Vac. Sci. Technol., vol. 18, p. 1402.Google Scholar
  34. 34.
    Petkov, V., Peng, Y., Williams, G., Huang, B., Tomalia, D., and Ren, Y., Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. 195402.CrossRefGoogle Scholar
  35. 35.
    Scanning Tunneling Microscopy: I. General Principles and Applications to Clean and Adsorbate-Covered Surfaces, Güntherodt, H.-J. and Wiesendanger, R., Eds., Berlin: Springer, 1994.Google Scholar
  36. 36.
    Gatin, A.K., Grishin, M.V., Dalidchik, F.I., Kovalevskii, S.A., and Kolchenko, N.N., Khim. Fiz., 2006, vol. 25, no. 6, p. 17.Google Scholar
  37. 37.
    Kovalevskii, S., Dalidchik, F., Grishin, M., Kolchenko, N., and Shub, B., Appl. Phys. A, 1998, vol. 66, p. 125.CrossRefGoogle Scholar
  38. 38.
    Grishin, M.V., Dalidchik, F.I., Kovalevskii, S.A., Shub, B.R., and Gatin, A.K., Russ. J. Phys. Chem. B, 2007, vol. 1, no. 5, p. 472.CrossRefGoogle Scholar
  39. 39.
    Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Principles of Scanning Probe Microscopy), Nizhni Novgorod: Inst. Fiziki Mikrostruktur, 2004.Google Scholar
  40. 40.
    Binnig, G., Rohrer, H., Berber, C., and Weibel, E., Appl. Phys. Lett., 1981, vol. 40, no. 2, p. 178.CrossRefGoogle Scholar
  41. 41.
    Meyer, E., Hug, H.J., and Bennewitz, R., Scanning Probe Microscopy, Berlin: Springer, 2004.CrossRefGoogle Scholar
  42. 42.
    Hamers, R.J. and Wang, Y.J., Chem. Rev., 1996, vol. 96, no. 4, p. 1261.CrossRefGoogle Scholar
  43. 43.
    Hamers, R.J., Tromp, R.M., and Demuth, J.E., Phys. Rev. Lett., 1986, vol. 56, no. 18, p. 1972.CrossRefGoogle Scholar
  44. 44.
    Lian, L., Hackett, P.A., and Rayner, D.M., J. Chem. Phys., 1993, vol. 99, p. 2583.CrossRefGoogle Scholar
  45. 45.
    Stromsnes, H., Jusul, S., Schimmelpfenning, B., Wahlgren, U., and Gropen, O., J. Mol. Struct., 2001, vol. 567–568, p. 137.CrossRefGoogle Scholar
  46. 46.
    Ozaki, T., Phys. Rev. B: Condens. Matter, 2003, vol. 67, p. 155108.CrossRefGoogle Scholar
  47. 47.
    Morrison, I., Bylander, D.M., and Kleinman, L., Phys. Rev. B: Condens. Matter, 1993, vol. 47, p. 6728.CrossRefGoogle Scholar
  48. 48.
    Ozaki, T. and Kino, H., Phys. Rev. B: Condens. Matter, 2004, vol. 69, p. 195113.CrossRefGoogle Scholar
  49. 49.
    Rhoderick, E.H., Metal-Semiconductor Contacts, Oxford: Clarendon, 1978.Google Scholar
  50. 50.
    Avtomatizatsiya proektirovaniya matrichnykh KMOP BIS (CMOS LSIC Arrays: Design Automation), Fomin, A.V., Ed., Moscow: Radio i Svyaz’, 1991.Google Scholar
  51. 51.
    Fizicheskie velichiny: Spravochnik (Physical Data: A Handbook), Grigorov, N.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  52. 52.
    Suvorov, A.L., Bogdanovich, B.Yu., Zaluzhnyi, A.G., Grafutin, V.I., Kalugin, V.V., Nesterovich, A.V., Prokop’ev, E.P., Timoshenkov, S.P., and Chaplygin, Yu.A., Tekhnologii struktur kremnii na izolyatore (Silicon-on-Insulator Structure Technology), Moscow: Mosk. Inst. Elektronnoi Tekhniki, 2004.Google Scholar
  53. 53.
    Manzoli, M., Chiorino, A., Vindigni, F., and Boccuzzi, F., Catal. Today, 2012, vol. 181, p. 62.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. V. Grishin
    • 1
  • A. K. Gatin
    • 1
  • N. V. Dokhlikova
    • 1
  • A. A. Kirsankin
    • 1
  • A. I. Kulak
    • 2
  • S. A. Nikolaev
    • 3
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of General and Inorganic ChemistryBelarusian Academy of SciencesMinskBelarus
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations