Advertisement

Kinetics and Catalysis

, Volume 56, Issue 3, pp 394–402 | Cite as

Effect of support modification on the physicochemical properties of a NiPd/Al2O3 catalyst for the autothermal reforming of methane

  • I. Z. IsmagilovEmail author
  • E. V. Matus
  • D. V. Nefedova
  • V. V. Kuznetsov
  • S. A. Yashnik
  • M. A. Kerzhentsev
  • Z. R. Ismagilov
Article

Abstract

For the development of effective catalysts for the autothermal reforming of methane, the NiPd catalysts were synthesized based on modified aluminum oxide and their physicochemical properties were studied using X-ray diffraction analysis, low-temperature nitrogen adsorption, transmission electron microscopy, and temperature-programmed reduction with hydrogen. It was found that the variation of modifying components (CeO2, ZrO2, La2O3, Ce0.5Zr0.5O2, and La2O3/Ce0.5Zr0.5O2) and their concentrations (10–30 wt %) makes it possible to regulate the particle size of NiO, the composition of a Ni-containing phase (NiO, La2NiO4, NiAl2O4, or Ni-La-Al-O) and the redox properties of nickel ions. It was shown that the average particle size of NiO increased from 6.7 to 17.5 nm in the following order of supports: La2O3/Al2O3 < La2O3/Ce0.5Zr0.5O2/Al2O3 < Al2O3 < Ce0.5Zr0.5O2/Al2O3 < CeO2/Al2O3 < ZrO2/Al2O3. On the introduction of the modifying oxides CeO2 and ZrO2 into aluminum oxide, the fraction of nickel in the composition of NiAl2O4 decreased and, therefore, the fraction of difficult-to-reduce Ni2+ decreased. The addition of La2O3 and La2O3/Ce0.5Zr0.5O2 strengthened the interaction of nickel cations with the support up to the formation of Ni-La-Al-O and La2NiO4 phases and increased the fraction of difficult-to-reduce Ni2+ ions. The resulting NiPd catalysts are promising in the catalysis of the autothermal reforming of methane.

Keywords

Hydrogen Uptake Modifier Content NiPd Hexaaluminate High Resolution Transmission Electron Micro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: Krasand, 2011.Google Scholar
  2. 2.
    Ismagilov, Z.R., Matus, E.V., Kerzhentsev, M.A., Tsikoza, L.T., Ismagilov, I.Z., Dosumov, K.D., and Mustafin, A.G., Pet. Chem, 2011, vol. 51, p. 174.CrossRefGoogle Scholar
  3. 3.
    Ismagilov, Z.R., Matus, E.V., and Tsikoza, L.T., Energy Environ. Sci., 2008, vol. 1, p. 526.CrossRefGoogle Scholar
  4. 4.
    Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjødt, N.C., Sehested, J., and Thomsen, S.G., J. Nat. Gas Sci. Eng., 2011, vol. 3, p. 423.CrossRefGoogle Scholar
  5. 5.
    Nahar, G. and Dupont, V., Recent Pat. Chem. Eng., 2013, vol. 6, p. 8.CrossRefGoogle Scholar
  6. 6.
    Cassinelli, W.H., Damyanova, S., Parizotto, N.V., Zanchet, D., Bueno, J.M.C., and Marques, C.M.P., Appl. Catal., A, 2014, vol. 475, p. 256.CrossRefGoogle Scholar
  7. 7.
    Simsek, E., Avci, A.K., and Onsan, Z.I., Catal. Today, 2011, vol. 178, p. 157.CrossRefGoogle Scholar
  8. 8.
    Vita, A., Cristiano, G., Italiano, C., Pino, L., and Specchia, S., Appl. Catal., B, 2015, vol. 162, p. 551.CrossRefGoogle Scholar
  9. 9.
    Nahar, G. and Dupont, V., Renewable Sustainable Energy Rev., 2014, vol. 32, p. 777.CrossRefGoogle Scholar
  10. 10.
    Li, D., Nakagawa, Y., and Tomishige, K., Appl. Catal., A, 2011, vol. 1–2, p. 1.CrossRefGoogle Scholar
  11. 11.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 481, p. 104.CrossRefGoogle Scholar
  12. 12.
    Dal Santo, V., Gallo, A., Naldoni, A., Guidotti, M., and Psaro, R., Catal. Today, 2012, vol. 197, p. 190.CrossRefGoogle Scholar
  13. 13.
    Stakheev, A.Yu. and Kustov, L.M., Appl. Catal., A, 1999, vol. 188, nos. 1–2, p. 3.CrossRefGoogle Scholar
  14. 14.
    Mäki-Arvela, P. and Murzin, D.Yu., Appl. Catal., A, 2013, vol. 451, p. 251.CrossRefGoogle Scholar
  15. 15.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.CrossRefGoogle Scholar
  16. 16.
    Escritori, J.C., Dantas, S.C., and Soares, R.R., Catal. Commun., 2009, vol. 10, p. 1090.CrossRefGoogle Scholar
  17. 17.
    Karatzas, X., Jansson, K., Gonzales, A., Dawody, J., and Pettersson, L.J., Appl. Catal., B, 2011, vol. 106, p. 476.CrossRefGoogle Scholar
  18. 18.
    Gao, J., Guo, J., Liang, D., Hou, Z., Fei, J., and Zheng, X., Int. J. Hydrogen Energy, 2012, vol. 37, p. 4107.CrossRefGoogle Scholar
  19. 19.
    Kim, H.-W., Kang, K.-M., Kwak, H.-Y., and Kim, J.H., Chem. Eng. J., 2011, vol. 168, p. 775.CrossRefGoogle Scholar
  20. 20.
    Santos, D.C.R.M., Madeira, L., and Passos, F.B., Catal. Today, 2010, vol. 149, p. 401.CrossRefGoogle Scholar
  21. 21.
    Profeti, L.P.P., Ticianelli, E.A., and Assaf, E.M., Int. J. Hydrogen Energy, 2009, vol. 34, p. 5049.CrossRefGoogle Scholar
  22. 22.
    Roh, H.-S., Jun, K.-W., and Park, S.-E., Appl. Catal., A, 2003, vol. 251, p. 275.CrossRefGoogle Scholar
  23. 23.
    Profeti, L.P.P., Dias, J.A.C., Assaf, J.M., and Assaf, E.M., J. Power Sources, 2009, vol. 190, p. 525.CrossRefGoogle Scholar
  24. 24.
    Abreu, A.J., Lucredio, A.F., and Assaf, E.M., Fuel Process. Technol., 2012, vol. 102, p. 140.CrossRefGoogle Scholar
  25. 25.
    Jing, Q., Fang, L., Lou, H., and Zheng, X., J. Rare Earths, 2009, vol. 27, p. 431.CrossRefGoogle Scholar
  26. 26.
    Tsipouriari, V.A. and Verykios, X.E., Catal. Today, 2001, vol. 64, p. 83.CrossRefGoogle Scholar
  27. 27.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Mota, N., Navarro, R.M., Fierro, J.L.G., Teryaeva, T.N., and Ismagilov, Z.R., Vestn. KuzGTU, 2014, vol. 4(104), p. 86.Google Scholar
  28. 28.
    Ismagilov, Z.R., Shkrabina, R.A., and Koryabkina, N.A., Catal. Today, 1999, vol. 47, p. 51.CrossRefGoogle Scholar
  29. 29.
    Nguefack, M., Popa, A.F., Rossignol, S., and Kappenstein, C., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 4279.CrossRefGoogle Scholar
  30. 30.
    Scheffer, B., Molhoek, P., and Moulijn, J.A., Appl. Catal., 1989, vol. 46, p. 11.CrossRefGoogle Scholar
  31. 31.
    Mori, H., Wen, C., Otomo, J., Eguchi, K., and Takahashi, H., Appl. Catal., A, 2003, vol. 245, p. 79.CrossRefGoogle Scholar
  32. 32.
    Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, D., and Monzón, A., Catal. Today, 2000, vol. 63, p. 71.CrossRefGoogle Scholar
  33. 33.
    Lisboa, J.S., Terra, L.E., Silva, P.R.J., Saitovitch, H., and Passos, F.B., Fuel Process. Technol., 2011, vol. 92, p. 2075.CrossRefGoogle Scholar
  34. 34.
    Yue, B., Zhou, R., Wang, Y., and Zheng, X., J. Mol. Catal. A: Chem., 2005, vol. 238, p. 241.CrossRefGoogle Scholar
  35. 35.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Mota, N., Navarro, R.M., Fierro, J.L.G., Teryaeva, T.N., and Ismagilov, Z.R., Vestn. KuzGTU, 2014, vol. 5(105), p. 91.Google Scholar
  36. 36.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, I.P., Mota, N., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20969.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. Z. Ismagilov
    • 1
    Email author
  • E. V. Matus
    • 1
  • D. V. Nefedova
    • 1
    • 2
  • V. V. Kuznetsov
    • 1
  • S. A. Yashnik
    • 1
  • M. A. Kerzhentsev
    • 1
  • Z. R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations