Kinetics and Catalysis

, Volume 56, Issue 1, pp 89–105 | Cite as

Effect of metal-support interaction in the M/Ce0.72Zr0.18Pr0.1O2 (M = Ru, Pd, and Pt) catalysts and their activity in CO and CH4 oxidation

  • A. V. Malyutin
  • A. I. Mikhailichenko
  • Ya. V. Zubavichus
  • V. Yu. Murzin
  • A. G. Koshkin
  • I. V. Sokolov


The study of catalysts based on a Ce0.72Zr0.18Pr0.1O2 solid solution with Pt, Pd, and Ru supported from acetylacetonate precursors showed their high activity in the processes of CO and methane oxidation. Transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were used for determining the nature of the active sites of the catalysts. The metal-support interaction effect, which increased in the order Ru < Pd < Pt, was found, and a relationship between the intensity of this interaction and the catalytic action was established.


Conditional Formula Reduced Surface Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flytzani-Stephanopoulos, M. and Gates, B.C., Ann. Rev. Chem. Biomol. Eng, 2012, vol. 3, p. 545.CrossRefGoogle Scholar
  2. 2.
    Nagai, Y., Dohmae, K., Ikeda, Y., Takagi, N., Hara, N., Tanabe, T., Guilera, G., Pascarelli, S., Newton, M.A., Takahashi, N., Shinjoh, H., and Matsumoto, S., Catal. Today, 2011, vol. 175, p. 133.CrossRefGoogle Scholar
  3. 3.
    Malyutin, A.V., Liberman, E.Yu., Mikhailichenko, A.I., Zubavichus, Ya.V., Murzin, V.Yu., Koshkin, A.G., D’yakonov, V.A., Filatov, E.N., and Kon’kova, T.V., Catal. Ind., 2014, vol. 6, p. 114.CrossRefGoogle Scholar
  4. 4.
    Malyutin, A.V., Liberman, E.Yu., Mikhailichenko, A.I., Avetisov, I.Kh., Koshkin, A.G., and Kon’kova, T.V., Katal. Prom-sti., 2013, no. 3, p. 54.Google Scholar
  5. 5.
    Gulyaev, R.V., Cand. Sci. (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 2010.Google Scholar
  6. 6.
    Kochubei, D.I., Babanov, Yu.A., and Zamaraev, K.I., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-Ray Spectroscopy for Structural Characterization of Amorphous Bodies: EXAFS Spectroscopy), Novosibirsk: Nauka, 1988.Google Scholar
  7. 7.
    Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, p. 537.CrossRefGoogle Scholar
  8. 8.
    Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B: Condens. Matter, 1998, vol. 58, p. 7565.CrossRefGoogle Scholar
  9. 9.
    Funke, H., Scheinost, A.C., and Chukalina, M., Phys. Rev. B: Condens. Matter, 2005, vol. 71, p. 094110.CrossRefGoogle Scholar
  10. 10.
    Funke, H., Chukalina, M., and Scheinost, A.C., J. Synchrotron Radiat., 2007, vol. 14, p. 426.CrossRefGoogle Scholar
  11. 11.
    Timoshenko, J. and Kuzmin, A., Comput. Phys. Commun., 2009, vol. 180, p. 920.CrossRefGoogle Scholar
  12. 12.
    Bera, P., Priolkar, K.R., Gayen, A., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Jayaram, V., and Subbanna, G.N., Chem. Mater., 2003, vol. 15, p. 2049.CrossRefGoogle Scholar
  13. 13.
    Shutilov, A.A., Zenkovets, G.A., Kryukova, G.N., Gavrilov, V.Yu., Paukshtis, E.A., Boronin, A.I., Koshcheev, S.V., and Tsybulya, S.V., Kinet. Catal., 2008, vol. 49, p. 271.CrossRefGoogle Scholar
  14. 14.
    Bekyarova, E., Fornasiero, P., Kaspar, J., and Graziani, M., Catal. Today, 1998, vol. 45, p. 179.CrossRefGoogle Scholar
  15. 15.
    Mingshi, J., Jung-Nam, P., Jeong Ku, K.S., Jin Hoe, K., Zhenghua, L., Young-Kwon, P., and Ji Man, K., Catal. Today, 2012, vol. 185, p. 183.CrossRefGoogle Scholar
  16. 16.
    Ye, X., Jinqiang, M., Yuanfeng, X., Hui, L., Hexing, L., Ping, L., and Xinggui, Z., Adv. Mater. Res., 2012, vol. 347.Google Scholar
  17. 17.
    Fernández-García, M., Martínez-Arias, A., Salamanca, L.N., Coronado, J.M., Anderson, J.A., Conesa, J.C., and Soria, J., J. Catal., 1999, vol. 187, p. 474.CrossRefGoogle Scholar
  18. 18.
    Hinokuma, S., Fujii, H., Okamoto, M., Ikeue, K., and Machida, M., Chem. Mater., 2010, vol. 22, p. 6183.CrossRefGoogle Scholar
  19. 19.
    Singh, P. and Hegde, M.S., Chem. Mater., 2009, vol. 21, p. 3337.CrossRefGoogle Scholar
  20. 20.
    Alexeev, O.S., Chin, S.Y., Engelhard, M.H., Ortiz-Soto, L., and Amiridis, M.D., J. Phys. Chem. B, 2005, vol. 109, p. 23430.CrossRefGoogle Scholar
  21. 21.
    Carlsson, P.A. and Skoglundh, M., Appl. Catal., B, 2011, vol. 101, p. 669.CrossRefGoogle Scholar
  22. 22.
    Xiao, L., Sun, K., Xu, X., and Li, X., Catal. Commun., 2005, vol. 6, p. 796.CrossRefGoogle Scholar
  23. 23.
    Bozo, C., Guilhaume, N., and Herrmann, J.M., J. Catal., 2001, vol. 203, p. 393.CrossRefGoogle Scholar
  24. 24.
    Kuznetsova, T., Sadykov, V., Batuev, L., Moroz, E., Burgina, E., Rogov, V., Kriventsov, V., and Kochubey, D., J. Nat. Gas Chem., 2006, vol. 15, p. 149.CrossRefGoogle Scholar
  25. 25.
    Cargnello, M., Delgado-Jaén, J.J., Hernández-Garrido, J.C., Bakhmutsky, K., Montini, T., Calvino-Gámez, J.J., Gorte, R.J., and Fornasiero, P., Science, 2012, vol. 337, p. 713.CrossRefGoogle Scholar
  26. 26.
    Roth, D., Gelin, P., Tena, E., and Primet, M., Top. Catal., 2001, vols. 16–17, p. 77.CrossRefGoogle Scholar
  27. 27.
    Simplício, L.M.T., Brandão, S.T., Sales, E.A., Lietti, L., and Bozon-Verduraz, F., Appl. Catal., B, 2006, vol. 63, p. 9.CrossRefGoogle Scholar
  28. 28.
    Zamar, F., Trovarelli, A., de Litenburg, C., and Dolcetti, G., J. Chem. Soc., Chem. Commun., 1995, p. 965.Google Scholar
  29. 29.
    Takeguchi, T., Manabe, S., Kikuchi, R., Eguchi, K., Kanazawa, T., Matsumoto, S., and Ueda, W., Appl. Catal., A, 2005, vol. 293, p. 91.CrossRefGoogle Scholar
  30. 30.
    Nagai, Y., Hirabayashi, T., Dohmae, K., Takagi, N., Minami, T., Shinjoh, H., and Matsumoto, S., J. Catal., 2006, vol. 242, p. 103.CrossRefGoogle Scholar
  31. 31.
    Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., J. Catal., 2000, vol. 196, p. 293.CrossRefGoogle Scholar
  32. 32.
    Tauster, S.J., Fung, S.C., and Garten, R.L., J. Am. Chem. Soc., 1978, vol. 100, p. 170.CrossRefGoogle Scholar
  33. 33.
    Yoshida, H., Nonoyama, S., Yazawa, Y., and Hattori, T., Phys. Scr., 2005, vol. 115, p. 813.CrossRefGoogle Scholar
  34. 34.
    Hall, M.D., Foran, G.J., Zhang, M., Beale, P.J., and Hambley, T.W., J. Am. Chem. Soc., 2003, vol. 125, p. 7524.CrossRefGoogle Scholar
  35. 35.
    Jin, T., Zhou, Y., Mains, G.J., and White, J.M., J. Phys. Chem., 1987, vol. 91, p. 5931.CrossRefGoogle Scholar
  36. 36.
    Eberhardt, W., Fayet, P., Cox, D.M., Fu, Z., Kaldor, A., Sherwood, R., and Sondericker, D., Phys. Rev. Lett., 1990, vol. 64, p. 780.CrossRefGoogle Scholar
  37. 37.
    Karakoti, A.S., King, J.E.S., Abhilash, V., and Sudipta, S., Appl. Catal., A, 2010, vol. 388, p. 262.CrossRefGoogle Scholar
  38. 38.
    Slavinskaya, E.M., Gulyaev, R.V., Stonkus, O.A., Zadesenets, A.V., Plyusnin, P.E., Shubin, Yu.V., Korenev, S.V., Ivanova, A.S., Zaikovskii, V.I., Danilova, I.G., and Boronin, A.I., Kinet. Catal., 2011, vol. 52, p. 282.CrossRefGoogle Scholar
  39. 39.
    Croy, J.R., Mostafa, S., Heinrich, H., and Roldan-Cuenya, B., Catal. Lett., 2009, vol. 131, p. 21.CrossRefGoogle Scholar
  40. 40.
    Bearden, J.A. and Burr, A.F., Rev. Mod. Phys., 1967, vol. 39, p. 125.CrossRefGoogle Scholar
  41. 41.
    Masahiro, W., Makoto, U., and Satoshi, M., J. Electroanal. Chem., 1987, vol. 229, p. 395.CrossRefGoogle Scholar
  42. 42.
    Yang, Z., Lu, Z., and Luo, G., Phys. Rev. B: Condens. Matter, 2007, vol. 76, p. 075421.CrossRefGoogle Scholar
  43. 43.
    Colussi, S., Gayen, A., Camellone, M.F., Boaro, M., Llorca, J., Fabris, S., and Trovarelli, A., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, p. 8481.CrossRefGoogle Scholar
  44. 44.
    Fu, Q., Saltsburg, H., and Flytzani-Stephanopoulos, M., Science, 2003, vol. 301, p. 935.CrossRefGoogle Scholar
  45. 45.
    Mayernick, A.D. and Janik, M.J., J. Phys. Chem., vol. 112, p. 14955.Google Scholar
  46. 46.
    Boronin, A.I., Slavinskaya, E.M., Danilova, I.G., Gulyaev, R.V., Amosov, Y.I., Kuznetsov, P.A., Polukhina, I.A., Koscheev, S.V., Zaikovskii, V.I., and Noskov, A.S., Catal. Today, 2009, vol. 144, p. 201.CrossRefGoogle Scholar
  47. 47.
    Rufus, I.B., Ramakrishnan, V., Viswanathan, B., and Kuriacose, J.C., J. Mater. Sci. Lett., 1993, vol. 12, p. 1536.Google Scholar
  48. 48.
    Ming, Z., Xue, L., Lihua, Z., Chao, Z., Maochu, G., and Yaoqiang, C., Catal. Today, 2011, vol. 175, p. 430.CrossRefGoogle Scholar
  49. 49.
    Matsumura, Y., Shen, W., Ichihashi, Y., and Okumura, M., J. Catal., 2001, vol. 197, p. 267.CrossRefGoogle Scholar
  50. 50.
    Mayernick, A.D. and Janik, M.J., J. Chem. Phys., 2009, vol. 131, p. 084701.CrossRefGoogle Scholar
  51. 51.
    Priolkar, K.R., Bera, P., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., and Lalla, N.P., Chem. Mater., 2002, vol. 14, p. 2120.CrossRefGoogle Scholar
  52. 52.
    Schlögl, R., Loose, G., Wesemann, M., and Baiker, A., J. Catal., 1992, vol. 137, p. 139.CrossRefGoogle Scholar
  53. 53.
    Kim, K.S. and Winograd, N., J. Catal., 1974, vol. 35, p. 66.CrossRefGoogle Scholar
  54. 54.
    Sundar-Manoharan, S. and Singh, B., Synth. React. Inorg., Met.-Org. Nano-Met. Chem., 2008, vol. 38, p. 148.Google Scholar
  55. 55.
    Yeung, H., Chan, H., Takoudis, C.G., and Weaver, M.J., J. Catal., 1997, vol. 172, p. 336.CrossRefGoogle Scholar
  56. 56.
    Mun, C., Ehrhardt, J.J., Lambert, J., and Madic, C., Appl. Surf. Sci., 2007, vol. 253, p. 7613.CrossRefGoogle Scholar
  57. 57.
    Sayan, S., Suzer, S., and Unerb, D.O., J. Mol. Struct., 1997, vols. 410–411, p. 111.Google Scholar
  58. 58.
    Hsin-Tsung, C., J. Phys. Chem. C, 2012, vol. 116, p. 6239.CrossRefGoogle Scholar
  59. 59.
    Hosokawa, S., Taniguchi, M., Utani, K., Kanai, H., and Imamura, S., Appl. Catal., A, 2005, vol. 289, p. 115.CrossRefGoogle Scholar
  60. 60.
    Shimura, S., Miura, H., Wada, K., Hosokawa, S., Yamazoe, S., and Inoue, M., Catal. Sci. Technol., 2011, vol. 1, p. 1340.CrossRefGoogle Scholar
  61. 61.
    Hosokawa, S., Kanai, H., Utani, K., Taniguchi, Y., Saito, Y., and Imamura, S., Appl. Catal., B, 2003, vol. 45, p. 181.CrossRefGoogle Scholar
  62. 62.
    Satsuma, A., Yanagihara, M., Ohyama, J., and Shimizu, K., Catal. Today, 2013, vol. 201, p. 62.CrossRefGoogle Scholar
  63. 63.
    Ribeiro, J., Tremiliosi-Filho, G., Olivi, P., and Andrade, A.R., Mater. Chem. Phys., 2011, vol. 125, p. 449.CrossRefGoogle Scholar
  64. 64.
    Over, H., Chem. Rev., 2012, vol. 112, p. 3356.CrossRefGoogle Scholar
  65. 65.
    Nomiyama, R.K., Piotrowski, M.J., and Da-Silva, J.L.F., Phys. Rev. B: Condens. Matter, 2011, vol. 84, p. 100101.CrossRefGoogle Scholar
  66. 66.
    Matsumura, Y., Shen, W.J., Ichihashi, Y., and Ando, H., Catal. Lett., 2000, vol. 68, p. 181.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Malyutin
    • 1
  • A. I. Mikhailichenko
    • 1
  • Ya. V. Zubavichus
    • 2
  • V. Yu. Murzin
    • 2
    • 3
  • A. G. Koshkin
    • 1
  • I. V. Sokolov
    • 4
  1. 1.Mendeleev University of Chemical TechnologyMoscowRussia
  2. 2.Kurchatov Institute Russian Research CenterMoscowRussia
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  4. 4.Keldysh Research CenterMoscowRussia

Personalised recommendations