Advertisement

Kinetics and Catalysis

, Volume 55, Issue 6, pp 798–808 | Cite as

Ethanol steam reforming over Co/ZnO and Rh/Al2O3 catalysts in a microchannel catalytic reactor

  • D. V. AndreevEmail author
  • V. V. Radaev
  • L. L. Makarshin
  • A. G. Gribovskii
  • V. I. Zaikovskii
  • V. N. Parmon
Article

Abstract

The activity of Co/ZnO and Rh/Al2O3 catalysts in ethanol steam reforming was studied in a traditional tubular reactor with a fixed catalyst bed and in a microchannel reactor. At temperatures of 600 and 700°C, the Rh/Al2O3 catalyst was much more active and stable than Co/ZnO. A comparison between the reactors of two types showed that the ethanol steam reforming occurred more efficiently in the microchannel reactor because of intense heat and mass exchange. The specific hydrogen production per unit weight of catalyst in the microchannel reactor was almost twice as high as that in the traditional reactor.

Keywords

High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Tubular Reactor Nickel Foam Microchannel Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuel Cell Handbook, Morgantown, W.Va.: US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2000.Google Scholar
  2. 2.
    Makarshin, L.L. and Parmon, V.N., Catal. Ind., 2012, vol. 4, no. 5, p. 27.CrossRefGoogle Scholar
  3. 3.
    Meng, Ni., Leung, D.Y.C., and Leung, M.K.H., Int. J. Hydrogen Energy, 2007, vol. 32, p. 3238.CrossRefGoogle Scholar
  4. 4.
    Liguras, D.K., Kondarides, D.I., and Verykios, X.E., Appl. Catal., B, 2003, vol. 43, p. 345.CrossRefGoogle Scholar
  5. 5.
    Men, Y., Kolb, G., Zapf, R., Hessel, V., and Loewe, H., Trans. Inst. Chem. Eng., Part B, 2007, vol. 85, no. 5, p. 413.CrossRefGoogle Scholar
  6. 6.
    Diagne, C., Idriss, H., and Kiennemann, A., Catal. Commun., 2002, vol. 3, p. 565.CrossRefGoogle Scholar
  7. 7.
    Virginie, M., Araque, M., Roger, A.-C., Vargas, J.C., and Kiennemann, A., Catal. Today, 2008, vol. 138, p. 21.CrossRefGoogle Scholar
  8. 8.
    Akande, A.J., Idem, R.O., and Dalai, A.K., Appl. Catal., A, 2005, vol. 287, p. 159.CrossRefGoogle Scholar
  9. 9.
    Sun, J., Qiu, X.P., Wu, F., and Zhu, W.T., Int. J. Hydrogen Energy, 2005, vol. 30, p. 437.CrossRefGoogle Scholar
  10. 10.
    Torres, J.A., Llorca, J., Casanovas, A., Domínguez, M., Salvado, J., and Montane, D., J. Power Sources, 2007, vol. 169, p. 158.CrossRefGoogle Scholar
  11. 11.
    Vargas, J.C., Vanhaecke, E., Roger, A.C., and Kiennemann, A., Stud. Surf. Sci. Catal., 2004, vol. 147, p. 115.CrossRefGoogle Scholar
  12. 12.
    Makarshin, L.L., Andreev, D.V., Gribovskii, A.G., Dutov, P.M., Khantakov, R.M., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 5, p. 765.CrossRefGoogle Scholar
  13. 13.
    Gribovskii, A.G., Makarshin, L.L., Andreev, D.V., Korotaev, S.V., Zaikovskii, V.I., and Parmon, V.N., Kinet. Catal., 2009, vol. 50, no. 3, p. 444.CrossRefGoogle Scholar
  14. 14.
    Delsman, E.R., Microstructured Reactors for a Portable Hydrogen Production Unit, Eindhoven: Tech. Univ., 2005.Google Scholar
  15. 15.
    Ratnasamy, C. and Wagner, J.P., Catal. Rev. Sci. Eng., 2009, vol. 51, p. 325.CrossRefGoogle Scholar
  16. 16.
    Karim, A.M., Yu Su, Junming Sun, Cheng Yang, Strohm, J.J., King, D.L., and Yong Wang, Appl. Catal., B, 2010, vol. 96, p. 441.CrossRefGoogle Scholar
  17. 17.
    Moura, J.S., Souza, M.O.G., and Rangel, M.C., Fuel, 2008, vol. 87, p. 3627.CrossRefGoogle Scholar
  18. 18.
    Araujo, G.C., Lima, S., Rangel, M.C., La Parola, V., Pena, M.A., and Fierro, J.L.G., Catal. Today, 2005, vols. 107–108, p. 906.CrossRefGoogle Scholar
  19. 19.
    Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, p. 623.CrossRefGoogle Scholar
  20. 20.
    Tsybulya, S.V., Cherepanova, S.V., Khasin, A.A., Zaikovskii, V.I., and Parmon, V.N., Dokl. Phys. Chem., 1999, vol. 366, p. 143.Google Scholar
  21. 21.
    Bartholomew, C.H., Appl. Catal., A, 2001, vol. 212, p. 17.CrossRefGoogle Scholar
  22. 22.
    Purnama, H., Ressler, T., Jentoft, R.E., Soerijanto, H., Schloegl, R., and Schomacker, R., Appl. Catal., A, 2004, vol. 259, p. 83.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. V. Andreev
    • 1
    Email author
  • V. V. Radaev
    • 2
  • L. L. Makarshin
    • 1
  • A. G. Gribovskii
    • 1
    • 3
  • V. I. Zaikovskii
    • 1
    • 3
  • V. N. Parmon
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations