Kinetics and Catalysis

, Volume 55, Issue 4, pp 528–533 | Cite as

Effect of doping a cadmium sulfide-zinc sulfide solid solution with copper ions on its physicochemical properties and catalytic activity in hydrogen recovery from aqueous solutions under the action of visible radiation

  • D. V. Markovskaya
  • T. P. Lyubina
  • E. A. Kozlova
  • S. V. Cherepanova
  • E. Yu. Gerasimov
  • A. A. Saraev
  • V. V. Kaichev
“Relation between Model and Real Catalysis. Catalysis for Power Engineering,” the 3rd Russian and German Workshop, June 24–27, 2013, Baikal, Russia


Cu y Cd0.3Zn0.7S1 + y photocatalysts intended for hydrogen recovery from aqueous solution under the action of visible radiation have been synthesized and characterized. The effect of the pH of the aqueous solution of Na2S-Na2SO3 on the rate of the photocatalytic reaction has been investigated. The highest activity is shown by the sample containing 1 mol % copper. With this photocatalyst, the quantum efficiency of the reaction under optimum conditions is 23.5%.


Sulfide Hydrogen Evolution Interplanar Spacing Zinc Sulfide Copper Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balashev, K.P., Soros. Obrazovat. Zh., 1998, no. 8, p. 58.Google Scholar
  2. 2.
    Drozdov, A.A., Zlomanov, V.P., Mazo, G.N., and Spiridonov, F.M., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Akademiya, 2004, vol. 2, p. 5.Google Scholar
  3. 3.
    Maeda, K., J. Photochem. Photobiol., C, 2011, vol. 12, p. 237.CrossRefGoogle Scholar
  4. 4.
    Carp, O., Huisman, C.L., and Reller, A., Prog. Solid State Chem., 2004, vol. 32, nos. 1–2, p. 33.CrossRefGoogle Scholar
  5. 5.
    Wang, L., Wang, W., Shang, M., Yin, W., Sun, S., and Zhang, L., Int. J. Hydrogen Energy, 2010, vol. 35, p. 19.CrossRefGoogle Scholar
  6. 6.
    Zhang, K., Jing, D., Xing, C., and Guo, L., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4685.CrossRefGoogle Scholar
  7. 7.
    Xing, C., Zhang, Y., Yan, W., and Guo, L., Int. J. Hydrogen Energy, 2006, vol. 31, p. 2018.CrossRefGoogle Scholar
  8. 8.
    Del Valle, F., Ishikawa, A., Domen, K., Villoria de la Mano, J.A., Sanchez-Sanchez, M.C., Gonzalez, I.D., Herreras, S., Mota, N., Rivas, M.E., Alvarez Galvan, M.C., Fierro, J.L.G., and Navarro, R.M., Catal. Today, 2009, vol. 143, p. 51.CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Jing, D., Liu, M., and Guo, L., Catal. Commun., 2008, vol. 9, p. 1720.CrossRefGoogle Scholar
  10. 10.
    Zhang, W. and Xu, R., Int. J. Hydrogen Energy, 2009, vol. 34, p. 8495.CrossRefGoogle Scholar
  11. 11.
    Zheng, X.-J., Wei, L.-F., Zhang, Z.-H., and Jiang, Q.-J., Int. J. Hydrogen Energy, 2009, vol. 34, p. 9033.CrossRefGoogle Scholar
  12. 12.
    Wei, Y.J., Xie, B., Wei, M.-B., Patsoura, A., Kondarides, D.I., and Verykios, X.E., Appl. Catal., B, 2006, vol. 64, p. 171.CrossRefGoogle Scholar
  13. 13.
    Bahruji, H., Bowker, M., Davies, P.R., Al-Mazroai, LS., Dickinson, A., Greaves, J., James, D., Millard, L., and Pedrono, F., J. Photochem. Photobiol., A, 2010, vol. 216, p. 115.CrossRefGoogle Scholar
  14. 14.
    Kozlova, E.A. and Vorontsov, A.V., Int. J. Hydrogen Energy, 2010, vol. 35, no. 14, p. 7337.CrossRefGoogle Scholar
  15. 15.
    Daskalaki, V.M. and Kondarides, D.I., Catal. Today, 2009, vol. 144, p. 75.CrossRefGoogle Scholar
  16. 16.
    Strataki, N., Antoniadou, M., Dracopoulos, V., and Kianos, P., Catal. Today, 2010, vol. 151, p. 53.CrossRefGoogle Scholar
  17. 17.
    Lyubina, T.P. and Kozlova, E.A., Kinet. Catal., 2012, vol. 53, no. 2, p. 188.CrossRefGoogle Scholar
  18. 18.
    Wang, J., Li, B., Chen, J., Li, N., Zheng, J., Zhao, J., and Zhu, Z., Appl. Surf. Sci., 2012, vol. 259, p. 118.CrossRefGoogle Scholar
  19. 19.
    Zhu, J. and Zach, M., Curr. Opin. Colloid Interface Sci., 2009, vol. 14, no. 4, p. 260.CrossRefGoogle Scholar
  20. 20.
    Jing, D., Guo, L., Zhao, L., Zhang, X., Liu, H., Li, M., Shen, Sh., Liu, G., Hu, X., Zhang, X., Zhang, K., Ma, L., and Guo, P., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7087.CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Jing, D., and Goo, L., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7051.CrossRefGoogle Scholar
  22. 22.
    Liu, G., Zhou, Z., and Guo, L., Chem. Phys. Lett., 2011, vol. 509, p. 43.CrossRefGoogle Scholar
  23. 23.
    Liu, G., Zhao, L., Ma, L., and Guo, L., Catal. Commun., 2008, vol. 9, p. 126.CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Wang, Y., and Xu, R., Int. J. Hydrogen Energy, 2010, vol. 35, p. 5245.CrossRefGoogle Scholar
  25. 25.
    Zhang, L.J., Xie, T.F., Wang, D.J., Li, S., Wang, L.L., Chen, L.P., and Lu, Y.C., Int. J. Hydrogen Energy, 2013, vol. 38, p. 11811.CrossRefGoogle Scholar
  26. 26.
    Li, C., Yang, X., Yang, B., Yan, Y., and Qian, Y., J. Cryst. Growth, 2006, vol. 291, p. 45.CrossRefGoogle Scholar
  27. 27.
    Macias-Sanchez, S.A., Nava, R., Hernandez-Morales, V., Acosta-Silva, Y.J., Gomes-Herrera, L., Pawelec, B., Al-Zahrani, S.M., Navarro, R.M., and Fierro, J.L.G., Int. J. Hygrogen Energy, 2012, vol. 37, p. 9948.CrossRefGoogle Scholar
  28. 28.
    Bhidet, V.G., Salkalachnet, S., Rastogit, A.C., Raot, C.N.R., and Hedget, M.S., J. Phys. D: Appl. Phys., 1981, vol. 14, p. 1647.CrossRefGoogle Scholar
  29. 29.
    Kundu, M., Khosravi, A.A., Kulkarn, S.K., and Singh, P., J. Mater. Sci., 1997, vol. 32, p. 245.CrossRefGoogle Scholar
  30. 30.
    Ma, H., Han, J., Fu, Y., Song, Y., Yu, C., and Dong, X., Appl. Catal., B, 2011, vol. 102, p. 417.CrossRefGoogle Scholar
  31. 31.
    Tran, N.H. and Lamb, R.N., J. Phys. Chem. B, 2002, vol. 106, p. 352.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. V. Markovskaya
    • 1
    • 2
  • T. P. Lyubina
    • 1
  • E. A. Kozlova
    • 1
    • 2
    • 3
  • S. V. Cherepanova
    • 1
    • 2
    • 3
  • E. Yu. Gerasimov
    • 1
    • 2
    • 3
  • A. A. Saraev
    • 1
  • V. V. Kaichev
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Research and Education Center for Energy-Efficient CatalysisNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations