Kinetics and Catalysis

, Volume 54, Issue 4, pp 511–519 | Cite as

Synthesis of nanosized thin-film bimetallic catalysts based on mesoporous TiO2 for microstructured reactors

  • L. B. Okhlopkova
  • E. V. MatusEmail author
  • I. Z. Ismagilov
  • M. A. Kerzhentsev
  • Z. R. Ismagilov


A synthetic procedure for the production of effective catalysts for the selective hydrogenation of organic substrates was developed, and the samples of thin-film Pt-Sn/TiO2 materials, which are characterized by high dispersity and a narrow size distribution of bimetallic particles in a mesoporous matrix of titanium dioxide, were prepared. With the use of a set of physicochemical techniques (low-temperature nitrogen adsorption, X-ray diffraction analysis, thermal analysis, and transmission electron microscopy), the formation and surface properties of the mesoporous Pt-Sn/TiO2 materials as powder and coatings on the surfaces of silica capillaries and plates were studied. Based on the effects of the sol composition and calcination temperature on the texture properties of TiO2, an optimum sol composition (1Ti(O-iPr)4: 0.009 F127: 0.13 HNO3: 1.3 H2O: 25 C2H5OH) and heat treatment conditions (calcination at 673 K; stepwise increase in the temperature) were determined to form a mesoporous coating with a specific surface area of 130 m2/g and an average pore diameter of 5.4 nm. It was found that the concentrations of metals (0.5–4 wt %), average particle sizes (1.0–3.5 nm), and particle size distributions in the Pt-Sn/TiO2 materials can be mainly regulated by varying the nature of the solvent, the concentration of Pt-Sn carbonyl complexes, and the time of adsorption, whereas the electronic state of metals can be fine-tuned by thermal treatment conditions. In an oxidizing atmosphere, the Pt-Sn carbonyl complexes decomposed with the formation of a two-phase system (Pt○ and SnO2). Thermal treatment in a vacuum and an inert or reducing atmosphere led to the formation of bimetallic phases (PtSn and Pt3Sn), whose stucture was regulated by the composition of a gas atmosphere and by the calcination temperature.


Average Pore Size Bimetallic Particle Capillary Coating Sample Weight Loss Bimetallic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rebrov, E.V., Khim. Tekhnol., 2009, vol. 10, p. 595.Google Scholar
  2. 2.
    Mason, B.P., Price, K.E., Steinbacher, J.L., Bogdan, A.R., and McQuade, D.T., Chem. Rev., 2007, vol. 107, no. 6, p. 2300.CrossRefGoogle Scholar
  3. 3.
    Crespo-Quesada, M., Cárdenas-Lizana, F., Dessimoz, A.L., and Kiwi-Minsker, L., ACS Catal., 2012, vol. 2, no. 8, p. 1773.CrossRefGoogle Scholar
  4. 4.
    Ismagilov, Z.R., Matus, E.V., Yakutova, A.M., Protasova, L.N., Ismagilov, I.Z., Kerzhentsev, M.A., Rebrov, E.V., and Schouten, J.C., Catal. Today, 2009, vol. 147, p. 81.CrossRefGoogle Scholar
  5. 5.
    Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., and Sanchez, C., J. Am. Chem. Soc., 2003, vol. 125, p. 9770.CrossRefGoogle Scholar
  6. 6.
    Wu, Q.L., Subramanian, N., Strzalka, J., Jiang, Z., and Rankin, S.E., Thin Solid Films, 2012, vol. 520, no. 9, p. 3558.CrossRefGoogle Scholar
  7. 7.
    Lafaye, G., Especel, C., Marecot, P., and Williams, C.T., J. Catal., 2011, vol. 283, p. 133.CrossRefGoogle Scholar
  8. 8.
    Coman, S.N., Parvulescu, V.I., Bruyn, M.D., De Vos, D.E., and Jacobs, P.A., J. Catal., 2002, vol. 206, p. 218.CrossRefGoogle Scholar
  9. 9.
    Llorca, J., Homs, N., Leon, J., Sales, J., Fierro, J.L.G., and Piscina, P.R., Appl. Catal., A, 1999, vol. 189, p. 77.CrossRefGoogle Scholar
  10. 10.
    Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., Prosvirin, I.P., and Ismagilov, Z.R., J. Nanopart. Res., 2012, vol. 14, no. 9. doi 10.1007/s11051-012-1089-9Google Scholar
  11. 11.
    Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., and Ismagilov, Z.R., J. Nanopart. Res, 2012, vol. 14, no. 9. doi 10.1007/s11051-012-1088-xGoogle Scholar
  12. 12.
    Okhlopkova, L.B., Matus, E.V., Ismagilov, I.Z., Kerzhentsev, M.A., Prosvirin, I.P., and Ismagilov, Z.R., J. Struct. Chem., 2013, vol. 54, no. 6 (in press).Google Scholar
  13. 13.
    Rebrov, E.V., Klinger, E.A., Schouten, J.C., Berenguer-Murcia, A., and Sulman, E.M., Org. Process Res. Dev., 2009, vol. 13, no. 5, p. 991.CrossRefGoogle Scholar
  14. 14.
    Shitova, N.B., Perfil’ev, Yu.D., Al’t, L.Ya., and Savel’eva, G.G., Russ. J. Inorg. Chem., 2001, vol. 46, no. 3, p. 376.Google Scholar
  15. 15.
    Nguyen-Phan, T.-D., Song, M.B., Kim, E.J., and Shin, E.W., Microporous Mesoporous Mater., 2009, vol. 119, p. 290.CrossRefGoogle Scholar
  16. 16.
    Yusuf, M.M., Imai, H., and Hirashima, H., J. Sol-Gel Sci. Technol., 2003, vol. 28, p. 97.CrossRefGoogle Scholar
  17. 17.
    Soler-Illia, G.J.A.A. and Sanchez, C., New J. Chem., 2000, vol. 24, p. 493.CrossRefGoogle Scholar
  18. 18.
    Pauly, T.R., Liu, Y., Pinnavaia, T.J., Billinge, S.J.L., and Rieker, T.P., J. Am. Chem. Soc., 1999, vol. 121, p. 8835.CrossRefGoogle Scholar
  19. 19.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to the Physical Chemistry of the Formation of Supramolecular Structures of Adsorbents and Catalysts), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2002.Google Scholar
  20. 20.
    Audo, C., Lambert, J.F., Che, M., and Didillon, B., Catal. Today, 2001, vol. 65, p. 157.CrossRefGoogle Scholar
  21. 21.
    Antolini, E., Int. J. Hydrogen Energy, 2011, vol. 46, no. 17, p. 11043.CrossRefGoogle Scholar
  22. 22.
    Protasova, L.N., Rebrov, E.V., Skelton, H.E., Wheatley, A.E.H., and Schouten, J.C., Appl. Catal., A, 2011, vol. 339, nos. 1–2, p. 12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. B. Okhlopkova
    • 1
  • E. V. Matus
    • 1
    Email author
  • I. Z. Ismagilov
    • 1
  • M. A. Kerzhentsev
    • 1
  • Z. R. Ismagilov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Coal Chemistry and Chemical Materials Science, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations