Kinetics and Catalysis

, Volume 54, Issue 1, pp 81–94 | Cite as

Low-temperature oxidation of carbon monoxide over (Mn1 − x M x )O2 (M = Co, Pd) catalysts

  • A. S. IvanovaEmail author
  • E. M. Slavinskaya
  • O. A. Stonkus
  • V. I. Zaikovskii
  • I. G. Danilova
  • R. V. Gulyaev
  • O. A. Bulavchenko
  • S. V. Tsibulya
  • A. I. Boronin


(Mn1 − x M x )O2 (M = Co, Pd) materials synthesized under hydrothermal conditions and dried at 80°C have been characterized by X-ray diffraction, diffuse reflectance spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, and adsorption and have been tested in CO oxidation under CO + O2 TPR conditions and under isothermal conditions at room temperature in the absence and presence of water vapor. The synthesized materials have the tunnel structure of cryptomelane irrespective of the promoter nature and content. Their specific surface area is 110–120 m2/g. MnO2 is morphologically uniform, and the introduction of cobalt or palladium into this oxide disrupts its uniformity and causes the formation of more or less crystallized aggregates varying in size. The (Mn,Pd)O2 composition contains Pd metal, which is in contact with the MnO2-based oxide phase. The average size of the palladium particles is no larger than 12 nm. The initial activity of the materials in CO oxidation, which was estimated in terms of the 10% CO conversion temperature, increases in the following order: MnO2 (100°C) < (Mn,Co)O2 (98°C) < (Mn,Co,Pd)O2 (23°C) < (Mn,Pd)O2 (−12°C). The high activity of (Mn,Pd)O2 is due to its surface containing palladium in two states, namely, oxidized palladium (interaction phase) palladium metal (clusters). The latter are mainly dispersed in the MnO2 matrix. This catalyst is effective in CO oxidation even at room temperature when there is no water vapor in the reaction mixture, but it is inactive in the presence of water vapor. Water vapor causes partial reduction of Mn4+ ions and an increase in the proportion of palladium metal clusters.


Manganese Dioxide Palladium Particle Temperature Program Reaction Palladium Metal Coherent Scattering Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RF Patent 2064834, 1994.Google Scholar
  2. 2.
    Merrill, D.R. and Scalione, C.C., J. Am. Chem. Soc., 1921, vol. 43, p. 1982.CrossRefGoogle Scholar
  3. 3.
    Yoon, C. and Cocke, D.L., J. Catal., 1988, vol. 113, p. 267.CrossRefGoogle Scholar
  4. 4.
    Hasegawa, Y., Fukumoto, K., Ishima, T., Yamamoto, H., Sano, M., and Miyake, T., Appl. Catal., B, 2009, vol. 89, p. 420.CrossRefGoogle Scholar
  5. 5.
    Luo, M.-F., Hou, Z.-Y., Yuan, X.-X., and Zheng, X.-M., Catal. Lett., 1998, vol. 50, p. 205.CrossRefGoogle Scholar
  6. 6.
    Lina, H.-K., Chiu, H.-C., Tsai, H.-C., Chien, S.-H., and Wang, C.-B., Catal. Lett., 2003, vol. 88, p. 169.CrossRefGoogle Scholar
  7. 7.
    Wu, J.C.-S., Lin, Z.-A., Tsai, F.-M., and Pan, J.-W., Catal. Today, 2000, vol. 63, p. 419.CrossRefGoogle Scholar
  8. 8.
    Atribak, I., Bueno-Lopez, A., Garcιa-Garcιa, A., Navarro, P., Frιas, D., and Montes, M., Appl. Catal., B, 2010, vol. 93, p. 267.CrossRefGoogle Scholar
  9. 9.
    Barrio, I., Legorburu, I., Montes, M., Dominguez, M.I., Centeno, M.A., and Odriozola, A., Catal. Lett., 2005, vol. 101, p. 151.CrossRefGoogle Scholar
  10. 10.
    Price, W.J., Analytical Atomic-Absorption Spectroscopy, London: Heyden, 1974.Google Scholar
  11. 11.
    Boehm, H.-P. and Knozinger, H., in Catalysis Science and Technology, Anderson, J.R. and Boudart, M, Eds., Berlin: Springer, 1983, vol. 4, p. 371.Google Scholar
  12. 12.
    Slavinskaya, E.M., Chesalov, Yu.A., Boronin, A.I., Polukhina, I.A., and Noskov, A.S., Kinet. Catal., 2005, vol. 46, no. 4, p. 555.CrossRefGoogle Scholar
  13. 13.
    Titkov, A.I., Salanov, A.N., Koscheev, S.V., and Boronin, A.I., React. Kinet. Catal. Lett., 2005, vol. 86, p. 371.CrossRefGoogle Scholar
  14. 14.
    Knyazev, A.S., Magaev, O.V., Vodyankina, O.V., Titkov, A.I., Salanov, A.N., Koshcheev, S.V., and Boronin, A.I., Kinet. Catal., 2005, vol. 46, no. 1, p. 151.CrossRefGoogle Scholar
  15. 15.
    Yu, Y., Takei, T., Ohashi, H., He, H., Zhang, X., and Haruta, M., J. Catal., 2009, vol. 267, no. 2, p. 121.CrossRefGoogle Scholar
  16. 16.
    Li, Sh.-J., Ma, Z.-Ch., Wang, L., and Liu, J.-Z., Sci. China, Ser. B: Chem., 2008, vol. 51, no. 2, p. 179.CrossRefGoogle Scholar
  17. 17.
    Sviridov, D.T., Sviridova, R.K., and Smirnov, Yu.F., Opticheskie spektry ionov perekhodnykh metallov v kristallakh (Optical Spectra of Transition Metal Ions in Crystals), Moscow: Nauka, 1976.Google Scholar
  18. 18.
    Rakai, A., Tessier, D., and Bozon-Verduraz, F., New J. Chem., 1992, vol. 16, p. 869.Google Scholar
  19. 19.
    Milella, F., Gallardo-Amores, J.M., Baldic, M., and Busca, G., J. Mater. Chem., 1998, vol. 8, no. 11, p. 2525.CrossRefGoogle Scholar
  20. 20.
    Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F., Handbook of X-Ray Photoelectron Spectroscopy, Muilenberg, G.E., Ed., Eden Prairie, Minn.: PerkinElmer, 1979.Google Scholar
  21. 21.
    Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, C.J., NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, National Institute of Standards and Technology, Gaithersburg, 2003.
  22. 22.
    Brabers, V.A.M., van Setten, F.M., and Knapen, P.S.A., J. Solid State Chem., 1983, vol. 49, p. 93.CrossRefGoogle Scholar
  23. 23.
    Shirley, D.A., Phys. Scr., 1975, vol. 11, p. 117.CrossRefGoogle Scholar
  24. 24.
    Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., Catal. Today, 2008, vol. 131, p. 477.CrossRefGoogle Scholar
  25. 25.
    Di Castro, V. and Polzonetti, G., J. Electron. Spectrosc. Relat. Phenom., 1989, vol. 48, p. 117.CrossRefGoogle Scholar
  26. 26.
    Chuang, T.J., Bridle, C.R., and Rice, D.W., Surf. Sci., 1976, vol. 59, p. 413.CrossRefGoogle Scholar
  27. 27.
    Shen, Z.-X., Allen, J.W., Ellis, W., Kang, J.S., Oh, S.-J., Lindau, I., and Spicer, W.E., Phys. Rev. B: Condens. Matter, 1990, vol. 42, p. 1817.CrossRefGoogle Scholar
  28. 28.
    Pillo, T., Zimmermann, R., Steiner, P., and Hufner, S., J. Phys. Condens. Matter, 1997, vol. 9, no. 19, p. 3987.CrossRefGoogle Scholar
  29. 29.
    Hoflund, G.B., Hagelin, H.A.E., Weaver, J.F., and Salaita, G.N., Appl. Surf. Sci., 2003, vol. 205, nos. 1–4, p. 102.CrossRefGoogle Scholar
  30. 30.
    Haack, L.P. and Otto, K., Catal. Lett., 1995, vol. 34, nos. 1–2, p. 31.CrossRefGoogle Scholar
  31. 31.
    Datye, A.K., Bravo, J., Nelson, T.R., Atanasova, P., Lyubovsky, M., and Pfefferle, L., Appl. Catal., A, 2000, vol. 198, nos. 1–2, p. 179.Google Scholar
  32. 32.
    Skala, T., Sutara, F., Skoda, M., Prince, K.C., and Matolin, V., J. Phys. Condens. Matter, 2009, vol. 21, no. 5, p. 3921.CrossRefGoogle Scholar
  33. 33.
    Wertheim, G.K., Z. Phys. D: At. Mol. Clusters, 1989, vol. 12, nos. 1–4, p. 319.CrossRefGoogle Scholar
  34. 34.
    Mason, M.G., Phys. Rev. B: Condens. Matter, 1983, vol. 27, no. 2, p. 748.CrossRefGoogle Scholar
  35. 35.
    Boronin, A.I., Slavinskaya, E.M., Danilova, I.G., Gulyaev, R.V., Amosov, Y.I., Kuznetsov, P.A., Polukhina, I.A., Koscheev, S.V., Zaikovskii, V.I., and Noskov, A.S., Catal. Today, 2009, vol. 144, nos. 3–4, p. 201.CrossRefGoogle Scholar
  36. 36.
    Bozon-Verduraz, F., Omar, A., Escard, J., and Pontvianne, B., J. Catal., 1978, vol. 53, no. 1, p. 126.CrossRefGoogle Scholar
  37. 37.
    Ojeda, M., Zhan, B.-Z., and Iglesia, E., J. Catal., 2012, vol. 285, no. 1, p. 92.CrossRefGoogle Scholar
  38. 38.
    Shido, T. and Iwasawa, Y., J. Catal., 1993, vol. 141, no. 1, p. 71.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Ivanova
    • 1
    Email author
  • E. M. Slavinskaya
    • 1
  • O. A. Stonkus
    • 1
  • V. I. Zaikovskii
    • 1
  • I. G. Danilova
    • 1
  • R. V. Gulyaev
    • 1
  • O. A. Bulavchenko
    • 1
  • S. V. Tsibulya
    • 1
  • A. I. Boronin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations