Advertisement

Kinetics and Catalysis

, Volume 53, Issue 5, pp 560–564 | Cite as

Catalytic combustion of diesel soot over perovskite-type catalyst: Potassium titanates

  • Xiuhong Meng
  • Qiang Wang
  • Linhai Duan
  • Jong-Shik Chung
Article

Abstract

Potassium titanates with a high crystallinity were successfully prepared by the sol-gel method and characterized by XRD, SEM, and BET surface area measurements. K6Ti4O11, K2Ti2O5, K2Ti4O9 were found to have better soot oxidation performance compared with Pt/TiO2 and CeO2 based catalysts. K2Ti2O5 may be an excellent candidate for soot oxidation due to its high oxidation activity, water-stability, resistance to sulfur poisoning and economical advantages. Certain amount of NO x can contribute to the catalytic combustion of diesel over potassium titanates, implying that K2TiO5 may be a kind of catalyst for simultaneous removal of NO x and soot.

Keywords

potassium titanates diesel soot soot oxidation NOx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Somers, C.M., Mccarry, B.E., Malek, F., and Quinn, J.S., Science, 2004, vol. 304, p. 1008.CrossRefGoogle Scholar
  2. 2.
    Finlayson, B.J. and Pitts, J.N., Science, 1997, vol. 276, p. 1045.CrossRefGoogle Scholar
  3. 3.
    Liu, Z.P., Jenkins, S.J., and King, D.A., J. Am. Chem. Soc., 2004, vol. 126, no. 34, p. 10746.CrossRefGoogle Scholar
  4. 4.
    Marques, R., Darcy, P., Costa, P.D., Mellottee, H., Trichard, J.M., and Djega-Mariadassou, G., J. Mol. Catal. A: Chem., 2004, vol. 221, p. 127.CrossRefGoogle Scholar
  5. 5.
    Wang, Q., Park, S.Y., Choi, J.S., and Chung, J.S., Appl. Catal., B, 2008, vol. 79, p. 101.CrossRefGoogle Scholar
  6. 6.
    Stanmore, B.R., Brilhac, J.F., and Gilot, P., Carbon, 2001, vol. 39, no. 15, p. 2247.CrossRefGoogle Scholar
  7. 7.
    Krishna, K. and Makkee, M., Catal. Today, 2006, vol. 114, p. 48.CrossRefGoogle Scholar
  8. 8.
    Liu, S., Obuchi, A., Oi-Uchisawa, J., Nanba, T., and Kushiyama, S., Appl. Catal., B, 2001, vol. 30, nos. 3–4, p. 259.Google Scholar
  9. 9.
    Fino, D., Fino, P., Saracco, G., and Specchia, V., Appl. Catal., B, 2003, vol. 43, p. 243.CrossRefGoogle Scholar
  10. 10.
    Hong, S.S. and Lee, G.D., Catal. Today, 2000, vol. 63, p. 397.CrossRefGoogle Scholar
  11. 11.
    Machida, M., Murata, Y., Kishikawa, K., Zhang, D., and Ikeue, K., Chem. Mater. 2008, vol. 20, no. 13, p. 4489.CrossRefGoogle Scholar
  12. 12.
    Weng, D., Li, J., Wu, X., and Lin, F., Catal. Commun. 2008, vol. 9, no. 9, p. 1898.CrossRefGoogle Scholar
  13. 13.
    Liang, Q., Wu, X., Weng, D., and Lu, Z., Catal. Commun. 2008, vol. 9, no. 2, p. 202.CrossRefGoogle Scholar
  14. 14.
    Wang, Q., Park, S.Y., Duan, L.H., and Chung, J.S., Appl. Catal., B, 2008, vol. 85, p. 10.CrossRefGoogle Scholar
  15. 15.
    Wang, Q., Park, S.Y., Choi, J.S., and Chung, J.S., Appl. Catal., B, 2008, vol. 79, p. 101.CrossRefGoogle Scholar
  16. 16.
    Wang, Q. and Chung, J.S., Appl. Catal., A, 2009, vol. 358, p. 59.CrossRefGoogle Scholar
  17. 17.
    Wang, Q., Zhu, J.H., Wei, S.Y., Chung, J.S., and Guo, Z.H., Ind. Eng. Chem. Res., 2010, vol. 49, p. 7330.CrossRefGoogle Scholar
  18. 18.
    Wang, Q., Sohn, J.H., and Chung, J.S., Appl. Catal., B, 2009, vol. 89, p. 97.CrossRefGoogle Scholar
  19. 19.
    Aneggi, E., Leitenburg, C., Dolcetti, G., and Trovarelli, A., Catal. Today, 2008, vol. 136, nos. 1–2, p. 3.CrossRefGoogle Scholar
  20. 20.
    Reichert, D., Bockhorn, H., and Kureti, S., Appl. Catal., B, 2008, vol. 80, p. 248.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Xiuhong Meng
    • 1
    • 2
  • Qiang Wang
    • 3
  • Linhai Duan
    • 1
    • 2
  • Jong-Shik Chung
    • 2
  1. 1.Liaoning Key Laboratory of Petrochemical EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.Department of Chemical EngineeringPOSTECHPohangRepublic of Korea
  3. 3.Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations